scispace - formally typeset
Search or ask a question
Author

Michael I. Jordan

Other affiliations: Stanford University, Princeton University, Broad Institute  ...read more
Bio: Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.


Papers
More filters
Proceedings Article
08 Dec 2008
TL;DR: It is shown that the error under perturbation of spectral clustering is closely related to the perturbations of the eigenvectors of the Laplacian matrix, and this bound is tight empirically across a wide range of problems, suggesting that it can be used in practical settings to determine the amount of data reduction allowed to meet a specification of permitted loss in clustering performance.
Abstract: Spectral clustering is useful for a wide-ranging set of applications in areas such as biological data analysis, image processing and data mining. However, the computational and/or communication resources required by the method in processing large-scale data are often prohibitively high, and practitioners are often required to perturb the original data in various ways (quantization, downsampling, etc) before invoking a spectral algorithm. In this paper, we use stochastic perturbation theory to study the effects of data perturbation on the performance of spectral clustering. We show that the error under perturbation of spectral clustering is closely related to the perturbation of the eigenvectors of the Laplacian matrix. From this result we derive approximate upper bounds on the clustering error. We show that this bound is tight empirically across a wide range of problems, suggesting that it can be used in practical settings to determine the amount of data reduction allowed in order to meet a specification of permitted loss in clustering performance.

96 citations

Proceedings Article
01 Jan 2002
TL;DR: This paper presents a robust approach to estimating the mean and covariance matrix within the general two-class MPM setting, and shows how this approach specializes to the single-class problem.
Abstract: In this paper we consider the problem of novelty detection, presenting an algorithm that aims to find a minimal region in input space containing a fraction α of the probability mass underlying a data set. This algorithm—the "single-class minimax probability machine (MPM)"—is built on a distribution-free methodology that minimizes the worst-case probability of a data point falling outside of a convex set, given only the mean and covariance matrix of the distribution and making no further distributional assumptions. We present a robust approach to estimating the mean and covariance matrix within the general two-class MPM setting, and show how this approach specializes to the single-class problem. We provide empirical results comparing the single-class MPM to the single-class SVM and a two-class SVM method.

96 citations

Posted Content
TL;DR: This note derives concentration inequalities for random vectors with subGaussian norm (a generalization of both sub Gaussian random vectors and norm bounded random vectors), which are tight up to logarithmic factors.
Abstract: In this note, we derive concentration inequalities for random vectors with subGaussian norm (a generalization of both subGaussian random vectors and norm bounded random vectors), which are tight up to logarithmic factors.

96 citations

Proceedings ArticleDOI
13 Jun 2005
TL;DR: A set of tools that augment the ability of operators to perceive the presence of failure are introduced: an automatic anomaly detector scours HTTP access logs to find changes in user behavior that are indicative of site failures, and a visualizer helps operators rapidly detect and diagnose problems.
Abstract: Web applications suffer from software and configuration faults that lower their availability. Recovering from failure is dominated by the time interval between when these faults appear and when they are detected by site operators. We introduce a set of tools that augment the ability of operators to perceive the presence of failure: an automatic anomaly detector scours HTTP access logs to find changes in user behavior that are indicative of site failures, and a visualizer helps operators rapidly detect and diagnose problems. Visualization addresses a key question of autonomic computing of how to win operators' confidence so that new tools will be embraced. Evaluation performed using HTTP logs from Ebates.com demonstrates that these tools can enhance the detection of failure as well as shorten detection time. Our approach is application-generic and can be applied to any Web application without the need for instrumentation

95 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examine a class of nonconvex objective functions that arise in mixture modeling and multistable systems and find that the computational complexity of sampling algorithms scales linearly with the model dimension while that of optimization algorithms scales exponentially.
Abstract: Optimization algorithms and Monte Carlo sampling algorithms have provided the computational foundations for the rapid growth in applications of statistical machine learning in recent years. There is, however, limited theoretical understanding of the relationships between these 2 kinds of methodology, and limited understanding of relative strengths and weaknesses. Moreover, existing results have been obtained primarily in the setting of convex functions (for optimization) and log-concave functions (for sampling). In this setting, where local properties determine global properties, optimization algorithms are unsurprisingly more efficient computationally than sampling algorithms. We instead examine a class of nonconvex objective functions that arise in mixture modeling and multistable systems. In this nonconvex setting, we find that the computational complexity of sampling algorithms scales linearly with the model dimension while that of optimization algorithms scales exponentially.

94 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations