scispace - formally typeset
Search or ask a question
Author

Michael I. Jordan

Other affiliations: Stanford University, Princeton University, Broad Institute  ...read more
Bio: Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.


Papers
More filters
Journal ArticleDOI
TL;DR: A mixture of a point-mass distribution and Silverman's g-prior on the regression vector of a generalized kernel model (GKM) allows a fraction of the components of the regressionvector to be zero and leads to a flexible approximation method for GPs.
Abstract: We propose a fully Bayesian methodology for generalized kernel mixed models (GKMMs), which are extensions of generalized linear mixed models in the feature space induced by a reproducing kernel. We place a mixture of a point-mass distribution and Silverman's g-prior on the regression vector of a generalized kernel model (GKM). This mixture prior allows a fraction of the components of the regression vector to be zero. Thus, it serves for sparse modeling and is useful for Bayesian computation. In particular, we exploit data augmentation methodology to develop a Markov chain Monte Carlo (MCMC) algorithm in which the reversible jump method is used for model selection and a Bayesian model averaging method is used for posterior prediction. When the feature basis expansion in the reproducing kernel Hilbert space is treated as a stochastic process, this approach can be related to the Karhunen-Loeve expansion of a Gaussian process (GP). Thus, our sparse modeling framework leads to a flexible approximation method for GPs.

43 citations

Journal ArticleDOI
TL;DR: In this paper, a Bayesian perspective on queueing models in which the arrival and departure times that are not observed are treated as latent variables is developed, where the posterior distribution over missing data and model parameters using Markov chain Monte Carlo.
Abstract: Modern Internet services, such as those at Google, Yahoo!, and Amazon, handle billions of requests per day on clusters of thousands of computers. Because these services operate under strict performance requirements, a statistical understanding of their performance is of great practical interest. Such services are modeled by networks of queues, where each queue models one of the computers in the system. A key challenge is that the data are incomplete, because recording detailed information about every request to a heavily used system can require unacceptable overhead. In this paper we develop a Bayesian perspective on queueing models in which the arrival and departure times that are not observed are treated as latent variables. Underlying this viewpoint is the observation that a queueing model defines a deterministic transformation between the data and a set of independent variables called the service times. With this viewpoint in hand, we sample from the posterior distribution over missing data and model parameters using Markov chain Monte Carlo. We evaluate our framework on data from a benchmark Web application. We also present a simple technique for selection among nested queueing models. We are unaware of any previous work that considers inference in networks of queues in the presence of missing data.

43 citations

Proceedings Article
03 Dec 2007
TL;DR: An objective function is proposed for the approach, EM-style algorithms for parameter estimation are derived, and their effectiveness on three challenging real-world learning tasks is demonstrated.
Abstract: The learning of probabilistic models with many hidden variables and non-decomposable dependencies is an important and challenging problem. In contrast to traditional approaches based on approximate inference in a single intractable model, our approach is to train a set of tractable submodels by encouraging them to agree on the hidden variables. This allows us to capture non-decomposable aspects of the data while still maintaining tractability. We propose an objective function for our approach, derive EM-style algorithms for parameter estimation, and demonstrate their effectiveness on three challenging real-world learning tasks.

43 citations

01 Jan 2004
TL;DR: This work shows how to generalize the binary classification informative vector machine (IVM) to multiple classes and is a principled approximation to Bayesian inference which yields valid uncertainty estimates and allows for hyperparameter adaption via marginal likelihood maximization.
Abstract: Sparse approximations to Bayesian inference for nonparametric Gaussian Process models scale linearly in the number of training points, allowing for the application of these powerful kernel-based models to large datasets. We show how to generalize the binary classification informative vector machine (IVM) (Lawrence et.al., 2002) to multiple classes. In contrast to earlier efficient approaches to kernel-based non-binary classification, our method is a principled approximation to Bayesian inference which yields valid uncertainty estimates and allows for hyperparameter adaption via marginal likelihood maximization. While most earlier proposals suggest fitting independent binary discriminants to heuristically chosen partitions of the data and combining these in a heuristic manner, our method operates jointly on the data for all classes. Crucially, we still achieve a linear scaling in both the number of classes and the number of training points.

43 citations

Posted Content
TL;DR: This paper derived a simple formula for the effect of infinitesimal model perturbations on MFVB posterior means and provided improved covariance estimates and local robustness measures for MFVB.
Abstract: Mean-field Variational Bayes (MFVB) is an approximate Bayesian posterior inference technique that is increasingly popular due to its fast runtimes on large-scale datasets. However, even when MFVB provides accurate posterior means for certain parameters, it often mis-estimates variances and covariances. Furthermore, prior robustness measures have remained undeveloped for MFVB. By deriving a simple formula for the effect of infinitesimal model perturbations on MFVB posterior means, we provide both improved covariance estimates and local robustness measures for MFVB, thus greatly expanding the practical usefulness of MFVB posterior approximations. The estimates for MFVB posterior covariances rely on a result from the classical Bayesian robustness literature relating derivatives of posterior expectations to posterior covariances and include the Laplace approximation as a special case. Our key condition is that the MFVB approximation provides good estimates of a select subset of posterior means---an assumption that has been shown to hold in many practical settings. In our experiments, we demonstrate that our methods are simple, general, and fast, providing accurate posterior uncertainty estimates and robustness measures with runtimes that can be an order of magnitude faster than MCMC.

43 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations