scispace - formally typeset
Search or ask a question
Author

Michael J. Holmes

Bio: Michael J. Holmes is an academic researcher from National University of Singapore. The author has contributed to research in topics: Ciguatera & Ciguatoxin. The author has an hindex of 18, co-authored 26 publications receiving 1519 citations.

Papers
More filters
Journal ArticleDOI
01 Oct 2010-Toxicon
TL;DR: The observations suggest that CFP events are driven more by inherent differences in species toxicity than by environmental modulation, which may affect the development of an early warning system for CFP.

227 citations

Journal ArticleDOI
TL;DR: Manzamine A, a β-carboline alkaloid present in several marine sponge species, inhibits the growth of the rodent malaria parasite Plasmodium berghei in vivo as discussed by the authors.
Abstract: Manzamine A, a beta-carboline alkaloid present in several marine sponge species, inhibits the growth of the rodent malaria parasite Plasmodium berghei in vivo. More than 90% of the asexual erythrocytic stages of P. berghei were inhibited after a single intraperitoneal injection of manzamine A into infected mice. A remarkable aspect of manzamine A treatment is its ability to prolong the survival of highly parasitemic mice, with 40% recovery 60 days after a single injection. Oral administration of an oil suspension of manzamine A also produced significant reductions in parasitemia. The plasma manzamine A concentration peaked 4 h after injection and remained high even at 48 h. Morphological changes of P. berghei were observed 1 h after treatment of infected mice. (-)-8-Hydroxymanzamine A also displayed antimalarial activity, whereas manzamine F, a ketone analog of manzamine A, did not. Our results suggest that manzamine A and (-)-8-hydroxymanzamine A are promising new antimalarial agents.

202 citations

Journal ArticleDOI
TL;DR: The GTT-91 isolate has been well characterized genetically and the original SEM stub of this isolate archived at the Smithsonian Institution has been re-examined to provide a more detailed morphological analysis of the epitype.
Abstract: Litaker R.W., Vandersea M.W., Faust M.A., Kibler S.R., Chinain M., Holmes M.J., Holland W.C. and Tester P.A. 2009. Taxonomy of Gambierdiscus including four new species, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri and Gambierdiscus ruetzleri (Gonyaulacales, Dinophyceae). Phycologia 48: 344–390. DOI: 10.2216/07-15.1 Gambierdiscus species produce toxins that cause ciguatera fish poisoning (CFP), the most common nonbacterial illness associated with fish consumption worldwide. Understanding the role that individual Gambierdiscus species play in causing CFP is hampered because the morphologically similar species in the genus are difficult to distinguish. Ambiguities in the description of the type species Gambierdiscus toxicus also exist. This paper presents detailed line drawings along with additional scanning electron microscopy (SEM) and light micrographs to more fully characterize the six known Gambierdiscus species in addition to describing four new species, Gambie...

198 citations

Journal ArticleDOI
TL;DR: The results of a general enrichment of gel particles support the concept of a hydrated gelatinous interfacial layer with a complex matrix of dissolved organic matter rather than a more classical model of organized layers of "wet" and "dry" surfactants.

163 citations

Journal ArticleDOI
TL;DR: A new, toxin‐producing, benthic dinoflagellate named Gambierdiscus yasumotoi sp.
Abstract: A new, toxin-producing, benthic dinoflagellate named Gambierdiscus yasumotoi sp. nov. was isolated from macroalgae from the fringing coral reef surrounding the Singapore island of Pulau Hantu. The plate formula of G. yasumotoi is Po, 3′, 7", 6c, 6s, 5"′, and 2"".Gambierdiscus yasumotoi has a globular shape and is not anterior-posteriorly compressed as are the two other known species in this genus, G. toxicus Adachi et Fukuyo 1979 and G. belizeanus Faust 1995. The girdle descends one to two girdle widths without overhang in contrast to the ascending girdles of G. toxicus and G. belizeanus. The dimensions of cultured G. yasumotoi were 45–63 μm in length, 38–50 μm in transdiameter and 43–61 μm in dorsoventral diameter. The thecae are smooth without areolae. The apical pore plate has the characteristic fishhook shape of Gambierdiscus, but it is significantly longer than G. toxicus. Cells from young cultures of G. yasumotoi are positively phototropic.

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The ecology of sponge-microbe associations is examined, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution.
Abstract: Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations.

1,262 citations

Journal ArticleDOI
TL;DR: The Effects of Harmful Algal Blooms on Aquatic Organisms: Vol. 10, No. 2, pp. 113-390 as mentioned in this paper was the first publication of this article.
Abstract: (2002). The Effects of Harmful Algal Blooms on Aquatic Organisms. Reviews in Fisheries Science: Vol. 10, No. 2, pp. 113-390.

1,242 citations

Journal ArticleDOI
TL;DR: It is proposed that biofilms drive all biogeochemical processes and represent the main way of active bacterial and archaeal life and are the most prominent and influential type of microbial life.
Abstract: Biofilms are a form of collective life with emergent properties that confer many advantages on their inhabitants, and they represent a much higher level of organization than single cells do. However, to date, no global analysis on biofilm abundance exists. We offer a critical discussion of the definition of biofilms and compile current estimates of global cell numbers in major microbial habitats, mindful of the associated uncertainty. Most bacteria and archaea on Earth (1.2 × 1030 cells) exist in the ‘big five’ habitats: deep oceanic subsurface (4 × 1029), upper oceanic sediment (5 × 1028), deep continental subsurface (3 × 1029), soil (3 × 1029) and oceans (1 × 1029). The remaining habitats, including groundwater, the atmosphere, the ocean surface microlayer, humans, animals and the phyllosphere, account for fewer cells by orders of magnitude. Biofilms dominate in all habitats on the surface of the Earth, except in the oceans, accounting for ~80% of bacterial and archaeal cells. In the deep subsurface, however, they cannot always be distinguished from single sessile cells; we estimate that 20–80% of cells in the subsurface exist as biofilms. Hence, overall, 40–80% of cells on Earth reside in biofilms. We conclude that biofilms drive all biogeochemical processes and represent the main way of active bacterial and archaeal life. In this Analysis article, Flemming and Wuertz calculate the total number of bacteria and archaea on Earth and estimate the fraction that lives in biofilms. They propose that biofilms are the most prominent and influential type of microbial life.

808 citations

Journal ArticleDOI
TL;DR: Here, HAB science is reviewed with an eye toward new concepts and approaches, emphasizing, where possible, the unexpected yet promising new directions that research has taken in this diverse field.
Abstract: The public health, tourism, fisheries, and ecosystem impacts from harmful algal blooms (HABs) have all increased over the past few decades. This has led to heightened scientific and regulatory attention, and the development of many new technologies and approaches for research and management. This, in turn, is leading to significant paradigm shifts with regard to, e.g., our interpretation of the phytoplankton species concept (strain variation), the dogma of their apparent cosmopolitanism, the role of bacteria and zooplankton grazing in HABs, and our approaches to investigating the ecological and genetic basis for the production of toxins and allelochemicals. Increasingly, eutrophication and climate change are viewed and managed as multifactorial environmental stressors that will further challenge managers of coastal resources and those responsible for protecting human health. Here we review HAB science with an eye toward new concepts and approaches, emphasizing, where possible, the unexpected yet promising new directions that research has taken in this diverse field.

769 citations

Journal ArticleDOI
TL;DR: The recent elucidation of the saxitoxin biosynthetic gene cluster in cyanobacteria and the identification of new PST analogs will present opportunities to further explore the pharmaceutical potential of these intriguing alkaloids.
Abstract: Saxitoxin (STX) and its 57 analogs are a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs). PSTs are the causative agents of paralytic shellfish poisoning (PSP) and are mostly associated with marine dinoflagellates (eukaryotes) and freshwater cyanobacteria (prokaryotes), which form extensive blooms around the world. PST producing dinoflagellates belong to the genera Alexandrium, Gymnodinium and Pyrodinium whilst production has been identified in several cyanobacterial genera including Anabaena, Cylindrospermopsis, Aphanizomenon Planktothrix and Lyngbya. STX and its analogs can be structurally classified into several classes such as non-sulfated, mono-sulfated, di-sulfated, decarbamoylated and the recently discovered hydrophobic analogs—each with varying levels of toxicity. Biotransformation of the PSTs into other PST analogs has been identified within marine invertebrates, humans and bacteria. An improved understanding of PST transformation into less toxic analogs and degradation, both chemically or enzymatically, will be important for the development of methods for the detoxification of contaminated water supplies and of shellfish destined for consumption. Some PSTs also have demonstrated pharmaceutical potential as a long-term anesthetic in the treatment of anal fissures and for chronic tension-type headache. The recent elucidation of the saxitoxin biosynthetic gene cluster in cyanobacteria and the identification of new PST analogs will present opportunities to further explore the pharmaceutical potential of these intriguing alkaloids.

584 citations