scispace - formally typeset
Search or ask a question
Author

Michael J. Pazzani

Other affiliations: University of California, Rutgers University, Mitre Corporation  ...read more
Bio: Michael J. Pazzani is an academic researcher from University of California, Riverside. The author has contributed to research in topics: Explanation-based learning & Stability (learning theory). The author has an hindex of 62, co-authored 183 publications receiving 28036 citations. Previous affiliations of Michael J. Pazzani include University of California & Rutgers University.


Papers
More filters
Journal ArticleDOI
TL;DR: The Bayesian classifier is shown to be optimal for learning conjunctions and disjunctions, even though they violate the independence assumption, and will often outperform more powerful classifiers for common training set sizes and numbers of attributes, even if its bias is a priori much less appropriate to the domain.
Abstract: The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier‘s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zero-one loss (misclassification rate) even when this assumption is violated by a wide margin. The region of quadratic-loss optimality of the Bayesian classifier is in fact a second-order infinitesimal fraction of the region of zero-one optimality. This implies that the Bayesian classifier has a much greater range of applicability than previously thought. For example, in this article it is shown to be optimal for learning conjunctions and disjunctions, even though they violate the independence assumption. Further, studies in artificial domains show that it will often outperform more powerful classifiers for common training set sizes and numbers of attributes, even if its bias is a priori much less appropriate to the domain. This article‘s results also imply that detecting attribute dependence is not necessarily the best way to extend the Bayesian classifier, and this is also verified empirically.

3,225 citations

Book ChapterDOI
01 Jan 2007
TL;DR: This chapter discusses content-based recommendation systems, i.e., systems that recommend an item to a user based upon a description of the item and a profile of the user's interests, which are used in a variety of domains ranging from recommending web pages, news articles, restaurants, television programs, and items for sale.
Abstract: This chapter discusses content-based recommendation systems, i.e., systems that recommend an item to a user based upon a description of the item and a profile of the user's interests. Content-based recommendation systems may be used in a variety of domains ranging from recommending web pages, news articles, restaurants, television programs, and items for sale. Although the details of various systems differ, content-based recommendation systems share in common a means for describing the items that may be recommended, a means for creating a profile of the user that describes the types of items the user likes, and a means of comparing items to the user profile to determine what to recommend. The profile is often created and updated automatically in response to feedback on the desirability of items that have been presented to the user.

2,428 citations

Journal ArticleDOI
TL;DR: This work introduces a new dimensionality reduction technique which it is called Piecewise Aggregate Approximation (PAA), and theoretically and empirically compare it to the other techniques and demonstrate its superiority.
Abstract: The problem of similarity search in large time series databases has attracted much attention recently. It is a non-trivial problem because of the inherent high dimensionality of the data. The most promising solutions involve first performing dimensionality reduction on the data, and then indexing the reduced data with a spatial access method. Three major dimensionality reduction techniques have been proposed: Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and more recently the Discrete Wavelet Transform (DWT). In this work we introduce a new dimensionality reduction technique which we call Piecewise Aggregate Approximation (PAA). We theoretically and empirically compare it to the other techniques and demonstrate its superiority. In addition to being competitive with or faster than the other methods, our approach has numerous other advantages. It is simple to understand and to implement, it allows more flexible distance measures, including weighted Euclidean queries, and the index can be built in linear time.

1,550 citations

Journal ArticleDOI
TL;DR: The types of information available to determine whether to recommend a particular page to a particular user are described and how each type of information may be used individually and an approach to combining recommendations from multiple sources are discussed.
Abstract: We discuss learning a profile of user interests for recommending information sources such as Web pages or news articles. We describe the types of information available to determine whether to recommend a particular page to a particular user. This information includes the content of the page, the ratings of the user on other pages and the contents of these pages, the ratings given to that page by other users and the ratings of these other users on other pages and demographic information about users. We describe how each type of information may be used individually and then discuss an approach to combining recommendations from multiple sources. We illustrate each approach and the combined approach in the context of recommending restaurants.

1,519 citations

Journal ArticleDOI
TL;DR: The use of a naive Bayesian classifier is described, and it is demonstrated that it can incrementally learn profiles from user feedback on the interestingness of Web sites and may easily be extended to revise user provided profiles.
Abstract: We discuss algorithms for learning and revising user profiles that can determine which World Wide Web sites on a given topic would be interesting to a user. We describe the use of a naive Bayesian classifier for this task, and demonstrate that it can incrementally learn profiles from user feedback on the interestingness of Web sites. Furthermore, the Bayesian classifier may easily be extended to revise user provided profiles. In an experimental evaluation we compare the Bayesian classifier to computationally more intensive alternatives, and show that it performs at least as well as these approaches throughout a range of different domains. In addition, we empirically analyze the effects of providing the classifier with background knowledge in form of user defined profiles and examine the use of lexical knowledge for feature selection. We find that both approaches can substantially increase the prediction accuracy.

1,353 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Journal ArticleDOI
TL;DR: In this article, a method of over-sampling the minority class involves creating synthetic minority class examples, which is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
Abstract: An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of oversampling the minority (abnormal)cla ss and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space)tha n only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space)t han varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC)and the ROC convex hull strategy.

17,313 citations

Journal ArticleDOI
TL;DR: The RDP Classifier can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes, and the majority of the classification errors appear to be due to anomalies in the current taxonomies.
Abstract: The Ribosomal Database Project (RDP) Classifier, a naive Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (≥95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/.

16,048 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: In this article, a method of over-sampling the minority class involves creating synthetic minority class examples, which is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
Abstract: An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.

11,512 citations