scispace - formally typeset
Search or ask a question
Author

Michael Jensen

Bio: Michael Jensen is an academic researcher from Brookhaven National Laboratory. The author has contributed to research in topics: Precipitation & Climate model. The author has an hindex of 26, co-authored 85 publications receiving 2460 citations. Previous affiliations of Michael Jensen include University of Alabama at Birmingham & Pennsylvania State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99) refers to a field experiment carried out in southeast Kansas during October 1999 and the subsequent program of investigation as discussed by the authors.
Abstract: The Cooperative Atmosphere-Surface Exchange Study—1999 (CASES-99) refers to a field experiment carried out in southeast Kansas during October 1999 and the subsequent program of investigation. Comprehensive data, primarily taken during the nighttime but typically including the evening and morning transition, supports data analyses, theoretical studies, and state-of-the-art numerical modeling in a concerted effort by participants to investigate four areas of scientific interest. The choice of these scientific topics is motivated by both the need to delineate physical processes that characterize the stable boundary layer, which are as yet not clearly understood, and the specific scientific goals of the investigators. Each of the scientific goals should be largely achievable with the measurements taken, as is shown with preliminary analysis within the scope of three of the four scientific goals. Underlying this effort is the fundamental motivation to eliminate deficiencies in surface layer and turbul...

533 citations

Journal ArticleDOI
TL;DR: The need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes is suggested.
Abstract: Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models and better estimate of the Earth radiative budget. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice particle effective radius. Note that the differences among some retrieval products are even larger than the prescribed uncertainties reported by the retrieval algorithm developers. It is shown that most of these large differences have their roots in the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.

258 citations

Journal ArticleDOI
TL;DR: A variety of cloud and precipitation events were sampled during MC3E, of which results from three deep convective events are highlighted, and vertical structure, air motions, precipitation drop size distributions, and ice properties were retrieved from multiwavelength radar, profiler, and aircraft observations.
Abstract: The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission, was conducted in south-central Oklahoma during April–May 2011. MC3E science objectives were motivated by the need to improve our understanding of midlatitude continental convective cloud system life cycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives, a multiscale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop size distributions, and ice properties were retrieved from multiwavelength radar, profiler, and aircraft observations for a mesoscale convec...

141 citations

Journal ArticleDOI
TL;DR: The Climate Modeling Best Estimate (CMBE) dataset as mentioned in this paper was developed by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program (www.arm.energy.gov).
Abstract: The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) was created in 1989 to address scientific uncertainties related to global climate change, with a focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. A central activity is the acquisition of detailed observations of clouds and radiation, as well as related atmospheric variables for climate model evaluation and improvement. Since 1992, ARM has established six permanent ARM Climate Research Facility (ACRF) sites and deployed an ARM Mobile Facility (AMF) in diverse climate regimes around the world (Fig. 1) to perform long-term continuous field measurements. The time record of ACRF data now exceeds a decade at most ACRF fixed sites and ranges from several months to one year for AMF deployments. Billions of measurements are currently stored in millions of data files in the ACRF Data Archive. The long-term continuous ACRF data provide invaluable information to improve our understanding of the interaction between clouds and radiation, and an observational basis for model validation and improvement and climate studies. Given the huge number of data files and current diversity of archived ACRF data structures, however, it can be difficult for anmore » outside user such as a climate modeler to quickly find the ACRF data product(s) that best meets their research needs. The required geophysical quantities may exist in multiple data streams, and over the history of ACRF operations, the measurements could be obtained by a variety of instruments, reviewed with different levels of data quality assurance, or derived using different algorithms. In addition, most ACRF data are stored in daily-based files with a temporal resolution that ranges from a few seconds to a few minutes, which is much finer than that sought by some users. Therefore, it is not as convenient for data users to perform quick comparisons over large spans of data, and this can hamper the use of ACRF data by the climate community. To make ACRF data better serve the needs of climate studies and model development, ARM has developed a data product specifically tailored for use by the climate community. The new data product, named the Climate Modeling Best Estimate (CMBE) dataset, assembles those quantities that are both well observed by ACRF over many years and are often used in model evaluation into one single dataset. The CMBE product consists of hourly averages and thus has temporal resolution comparable to a typical resolution used in climate model output. It also includes standard deviations within the averaged hour and quality control flags for the selected quantities to indicate the temporal variability and data quality. Since its initial release in February 2008, the new data product has quickly drawn the attention of the climate modeling community. It is being used for model evaluation by two major U.S. climate modeling centers, the National Center for Atmospheric Research (NCAR) and the Geophysical Fluid Dynamics Laboratory (GFDL). The purpose of this paper is to provide an overview of CMBE data and a few examples that demonstrate the potential value of CMBE data for climate modeling and in studies of cloud processes and climate variability and change.« less

132 citations

Journal ArticleDOI
TL;DR: GoAmazon2014/5 as mentioned in this paper, a cooperative project of Brazil, Germany and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city.
Abstract: The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed t...

131 citations


Cited by
More filters
01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: In this paper, the surface layer formulation of the Weather Research and Forecasting (WRF) model was modified to provide more suitable similarity functions to simulate surface layer evolution under strong stable/unstable conditions.
Abstract: This study summarizes the revision performed on the surface layer formulation of the Weather Research and Forecasting (WRF) model. A first set of modifications are introduced to provide more suitable similarity functions to simulate the surface layer evolution under strong stable/unstable conditions. A second set of changes are incorporated to reduce or suppress the limits that are imposed on certain variables in order to avoid undesired effects (e.g., a lower limit in u * ). The changes introduced lead to a more consistent surface layer formulation that covers the full range of atmospheric stabilities. The turbulent fluxes are more (less) efficient during the day (night) in the revised scheme and produce a sharper afternoon transition that shows the largest impacts in the planetary boundary layer meteorological variables. The most important impacts in the near-surface diagnostic variables are analyzed and compared with observations from a mesoscale network.

1,006 citations

Book
09 Jan 2004
TL;DR: In this paper, Sea salt aerosol (SSA) particles interact with other atmospheric gaseous and aerosol constituents by acting as sinks for condensable gases and suppressing new particle formation, thus influencing the size distribution of other aerosols and more broadly influencing the geochemical cycles of substances with which they interact.
Abstract: Sea salt aerosol (SSA) exerts a major influence over a broad reach of geophysics. It is important to the physics and chemistry of the marine atmosphere and to marine geochemistry and biogeochemistry generally. It affects visibility, remote sensing, atmospheric chemistry, and air quality. Sea salt aerosol particles interact with other atmospheric gaseous and aerosol constituents by acting as sinks for condensable gases and suppressing new particle formation, thus influencing the size distribution of these other aerosols and more broadly influencing the geochemical cycles of substances with which they interact. As the key aerosol constituent over much of Earth's surface at present, and all the more so in pre-industrial times, SSA is central to description of Earth's aerosol burden.

603 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare large-eddy simulation (LES) models for the stable boundary layer (SBL) as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative.
Abstract: Results are presented from the first intercomparison of large-eddy simulation (LES) models for the stable boundary layer (SBL), as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative. A moderately stable case is used, based on Arctic observations. All models produce successful simulations, in as much as they generate resolved turbulence and reflect many of the results from local scaling theory and observations. Simulations performed at 1-m and 2-m resolution show only small changes in the mean profiles compared to coarser resolutions. Also, sensitivity to subgrid models for individual models highlights their importance in SBL simulation at moderate resolution (6.25 m). Stability functions are derived from the LES using typical mixing lengths used in numerical weather prediction (NWP) and climate models. The functions have smaller values than those used in NWP. There is also support for the use of K-profile similarity in parametrizations. Thus, the results provide improved understanding and motivate future developments of the parametrization of the SBL.

496 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the major advances in aerosol measurements, PBL processes and their interactions with each other through complex feedback mechanisms, and highlight the priorities for future studies.
Abstract: Air quality is concerned with pollutants in both the gas phase and solid or liquid phases. The latter are referred to as aerosols, which are multifaceted agents affecting air quality, weather and climate through many mechanisms. Unlike gas pollutants, aerosols interact strongly with meteorological variables with the strongest interactions taking place in the planetary boundary layer (PBL). The PBL hosting the bulk of aerosols in the lower atmosphere is affected by aerosol radiative effects. Both aerosol scattering and absorption reduce the amount of solar radiation reaching the ground and thus reduce the sensible heat fluxes that drive the diurnal evolution of the PBL. Moreover, aerosols can increase atmospheric stability by inducing a temperature inversion as a result of both scattering and absorption of solar radiation, which suppresses dispersion of pollutants and leads to further increases in aerosol concentration in the lower PBL. Such positive feedback is especially strong during severe pollution events. Knowledge of the PBL is thus crucial for understanding the interactions between air pollution and meteorology. A key question is how the diurnal evolution of the PBL interacts with aerosols, especially in vertical directions, and affects air quality. We review the major advances in aerosol measurements, PBL processes and their interactions with each other through complex feedback mechanisms, and highlight the priorities for future studies.

495 citations