scispace - formally typeset
Search or ask a question
Author

Michael John Bohanon

Other affiliations: Upjohn, Pharmacia
Bio: Michael John Bohanon is an academic researcher from Pfizer. The author has contributed to research in topics: Antibacterial agent & Potentiator. The author has an hindex of 7, co-authored 12 publications receiving 622 citations. Previous affiliations of Michael John Bohanon include Upjohn & Pharmacia.

Papers
More filters
Journal ArticleDOI
TL;DR: Crystallographic studies provided further information on important binding interactions responsible for high enzymatic binding and led to compound VI, which inhibits HIV protease with a Ki value of 8 pM and shows an IC90 value of 100 nM in antiviral cell culture.
Abstract: A broad screening program previously identified phenprocoumon (1) as a small molecule template for inhibition of HIV protease. Subsequent modification of this lead through iterative cycles of structure-based design led to the activity enhancements of pyrone and dihydropyrone ring systems (II and V) and amide-based substitution (III). Incorporation of sulfonamide substitution within the dihydropyrone template provided a series of highly potent HIV protease inhibitors, with structure−activity relationships described in this paper. Crystallographic studies provided further information on important binding interactions responsible for high enzymatic binding. These studies culminated in compound VI, which inhibits HIV protease with a Ki value of 8 pM and shows an IC90 value of 100 nM in antiviral cell culture. Clinical trials of this compound (PNU-140690, Tipranavir) for treatment of HIV infection are currently underway.

276 citations

Journal ArticleDOI
TL;DR: Subsequent evaluation against the rat DAAO enzyme revealed a divergent SAR versus the human enzyme and may explain the high exposures of drug necessary to achieve significant changes in rat or mouse cerebellum D-serine.
Abstract: 3-Hydroxyquinolin-2(1H)-one (2) was discovered by high throughput screening in a functional assay to be a potent inhibitor of human DAAO, and its binding affinity was confirmed in a Biacore assay. Cocrystallization of 2 with the human DAAO enzyme defined the binding site and guided the design of new analogues. The SAR, pharmacokinetics, brain exposure, and effects on cerebellum D-serine are described. Subsequent evaluation against the rat DAAO enzyme revealed a divergent SAR versus the human enzyme and may explain the high exposures of drug necessary to achieve significant changes in rat or mouse cerebellum D-serine.

108 citations

Journal ArticleDOI
TL;DR: Evaluation of various tether lengths demonstrated that the two-carbon tethered analogues are optimal and removal of the fluorine has a modest effect on antibiotic accumulation and the defluorinated analogue 17 is equally potent to the original lead 1.

49 citations

Patent
03 Feb 1994
TL;DR: In this article, the present invention relates to compounds of formula (I) which are 4-hydroxy-benzopyran-2-ones and 4-hexano-cycloalkyl[b]pyran 2-ones useful for inhibiting a retrovirus in a mammalian cell infected with said retro-virus.
Abstract: The present invention relates to compounds of formula (I) which are 4-hydroxy-benzopyran-2-ones and 4-hydroxy-cycloalkyl[b]pyran-2-ones useful for inhibiting a retrovirus in a mammalian cell infected with said retrovirus. In formula (I) R10 and R20 taken together are formula (II) or formula (III).

30 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ and Hong Liu.
Abstract: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ Alexander E. Sorochinsky, Santos Fustero,*,‡,§ Vadim A. Soloshonok,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andreś Estelleś, 46100 Burjassot, Valencia, Spain Laboratorio de Molećulas Orgańicas, Centro de Investigacioń Príncipe Felipe, C/ Eduardo Primo Yuf́era 3, 46012 Valencia, Spain Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine

3,368 citations

Journal ArticleDOI
TL;DR: The case for the use of HTS as part of a proven scientific tool kit, the wider use of which is essential for the discovery of new chemotypes is presented.
Abstract: High-throughput screening (HTS) has been postulated in several quarters to be a contributory factor to the decline in productivity in the pharmaceutical industry. Moreover, it has been blamed for stifling the creativity that drug discovery demands. In this article, we aim to dispel these myths and present the case for the use of HTS as part of a proven scientific tool kit, the wider use of which is essential for the discovery of new chemotypes.

1,023 citations

Journal ArticleDOI
TL;DR: This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps, with particular focus on AcrAB-TolC and Mex pumps.
Abstract: The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.

1,016 citations

Journal ArticleDOI
Keith Poole1
TL;DR: Given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Abstract: Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

979 citations