scispace - formally typeset
Search or ask a question
Author

Michael K. Dush

Bio: Michael K. Dush is an academic researcher from University of Cincinnati. The author has contributed to research in topics: Adenine phosphoribosyltransferase & Gene. The author has an hindex of 6, co-authored 6 publications receiving 4950 citations. Previous affiliations of Michael K. Dush include University of Cincinnati Academic Health Center.

Papers
More filters
Journal ArticleDOI
TL;DR: The efficacy of this cDNA cloning strategy was demonstrated by isolating cDNA clones of mRNA from int-2, a mouse gene that expresses four different transcripts at low abundance, the longest of which is approximately 2.9 kilobases.
Abstract: We have devised a simple and efficient cDNA cloning strategy that overcomes many of the difficulties encountered in obtaining full-length cDNA clones of low-abundance mRNAs. In essence, cDNAs are generated by using the DNA polymerase chain reaction technique to amplify copies of the region between a single point in the transcript and the 3' or 5' end. The minimum information required for this amplification is a single short stretch of sequence within the mRNA to be cloned. Since the cDNAs can be produced in one day, examined by Southern blotting the next, and readily cloned, large numbers of full-length cDNA clones of rare transcripts can be rapidly produced. Moreover, separation of amplified cDNAs by gel electrophoresis allows precise selection by size prior to cloning and thus facilitates the isolation of cDNAs representing variant mRNAs, such as those produced by alternative splicing or by the use of alternative promoters. The efficacy of this method was demonstrated by isolating cDNA clones of mRNA from int-2, a mouse gene that expresses four different transcripts at low abundance, the longest of which is approximately 2.9 kilobases. After less than 0.05% of the cDNAs produced had been screened, 29 independent int-2 clones were isolated. Sequence analysis demonstrated that the 3' and 5' ends of all four int-2 mRNAs were accurately represented by these clones.

4,673 citations

Journal ArticleDOI
TL;DR: The nucleotide sequence of a functional mouse adenine phosphoribosyltransferase (APRT) gene and its cDNA is determined and the amino acid sequence of the enzyme is deduced from an open reading frame in the cDNA and predicts a protein with a molecular weight of 19,560.
Abstract: We have determined the nucleotide sequence of a functional mouse adenine phosphoribosyltransferase (APRT) gene and its cDNA. The amino acid sequence of the enzyme is deduced from an open reading frame in the cDNA and predicts a protein with a molecular weight of 19,560. The protein coding region of the gene is approximately 2 kilobases, and it is composed of five exons and four introns. While the body of the gene is 53% G + C, the 200 nucleotides upstream from the ATG translation start codon are 66% G + C and contain three copies of the sequence C-C-G-C-C-C. The mouse APRT enzyme shares a homologous 20-amino acid sequence with mouse, hamster, and human hypoxanthine phosphoribosyltransferases (HPRTs) and several bacterial phosphoribosyltransferases. This sequence has previously been shown to be a likely catalytic domain in human HPRT and Escherichia coli glutamine phosphoribosyltransferase. Because of the similarities in function of these proteins, both eukaryotic and prokaryotic, it is not unexpected that they should exhibit one or more regions of homology, particularly at the 5-phosphoribosyl-1-pyrophosphate and purine binding sites, especially if they are related via a common evolutionary lineage. This homologous sequence is interrupted by a single intron in the mouse APRT gene and by two introns in the mouse HPRT gene. Furthermore, the positions of both introns in the HPRT sequence are different from that of the single intron in the corresponding sequence of the APRT gene.

129 citations

Journal ArticleDOI
TL;DR: Comparison between human and mouse APRT gene nucleotide sequences reveals a high degree of homology within protein coding regions but an absence of significant homology in 5' flanking, 3' untranslated, and intron sequences, suggesting that there may be selection for CpG dinucleotides in these regions and that their maintenance may be important for AP RT gene function.
Abstract: The functional human adenine phosphoribosyltransferase (APRT) gene is less than 2.6 kilobases in length and contains five exons. The amino acid sequences of APRTs have been highly conserved throughout evolution. The human enzyme is 82%, 90%, and 40% identical to the mouse, hamster, and Escherichia coli enzymes, respectively. The promoter region of the human APRT gene, like that of several other "housekeeping" genes, lacks "TATA" and "CCAAT" boxes but contains five GC boxes that are potential binding sites for the Sp1 transcription factor. The distal three, however, are dispensable for gene expression. Comparison between human and mouse APRT gene nucleotide sequences reveals a high degree of homology within protein coding regions but an absence of significant homology in 5' flanking, 3' untranslated, and intron sequences, except for similarly positioned GC boxes in the promoter region and a 26-base-pair region in intron 3. This 26-base-pair sequence is 92% identical with a similarly positioned sequence in the mouse gene and is also found in intron 3 of the hamster gene, suggesting that its retention may be a consequence of stringent selection. The positions of all introns have been precisely retained in the human and both rodent genes, as has an unusual AG/GC donor splice site in intron 2. Particularly striking is the distribution of CpG dinucleotides within human and rodent APRT genes. Although the nucleotide sequences of intron 1 and the 5' flanking regions of human and mouse APRT genes have no substantial homology, they have a frequency of CpG dinucleotides that is much higher than expected and nonrandom considering the G + C content of the gene. Retention of an elevated CpG dinucleotide content, despite loss of sequence homology, suggests that there may be selection for CpG dinucleotides in these regions and that their maintenance may be important for APRT gene function.

88 citations

Journal ArticleDOI
TL;DR: A complete human APRT gene has been isolated from a lambda phage genomic library using cloned mouse APRT DNA as a probe and no gross deletions or rearrangements were revealed, nor the Taq1 polymorphism.
Abstract: A complete human APRT gene has been isolated from a lambda phage genomic library using cloned mouse APRT DNA as a probe. The human gene, contained in a recombinant lambda phage designated λHuap15, is functional by virtue of its capacity to transfer human APRT activity to Aprt− mouse recipient cells after phage-mediated transfection. Digestion of λHuap15 DNA with BamH1 generated a 2.2-kb fragment that is the only fragment of eight produced to hybridize with the mouse APRT gene. This 2.2-kb BamH1 fragment is a unique, single copy sequence, and has been used to identify a restriction fragment length polymorphism (RFLP) associated with the APRT locus. Taq1 digestion and Southern blot analysis of DNAs from 49 unrelated individuals produced three different patterns. DNAs of 30 individuals produced a restriction pattern of three labeled fragments about 500 bp, 600 bp, and 2.1 kb in size, which is characteristic for individuals homozygous for the more common allele. Two individuals homozygous for the less frequent allele displayed labeled fragments of 500 bp and 2.7 kb. The remaining 17 DNA samples produced all four labeled bands as expected for heterozygous individuals. The frequency of heterozygotes in the population is about 35%, while the frequency of the less common allele is about 0.21. Restriction enzyme analysis of DNAs from two APRT-deficient brothers and from an unrelated heterozygote revealed no gross deletions or rearrangements, nor the Taq1 polymorphism.

32 citations

Journal ArticleDOI
TL;DR: No upstream anti-sense transcripts were detected in either mouse CAK or liver cells, confirming that the mouse aprt promoter, unlike some other GC-rich promoters appears not to support bidirectional transcription.
Abstract: The mouse aprt promoter contains four GC boxes, which bind transcription factor Spl in vitro, and lacks both TATA and CCAAT boxes. Removal of the two most distal GC boxes of this promoter had little effect on APRT enzyme levels produced in a transient expression assay. Deletion of the distal three GC boxes resulted in a 50% reduction, and deletion of all GC boxes resulted in essentially complete loss of APRT activity. There are two predominant transcription start sites which are located within the region containing the GC boxes. The promoter behaved as a relatively strong promoter when compared to the RSV LTR promoter in a transient CAT assay, and operated in one orientation only. No upstream anti-sense transcripts were detected in either mouse CAK or liver cells, confirming that the mouse aprt promoter, unlike some other GC-rich promoters appears not to support bidirectional transcription.

31 citations


Cited by
More filters
Journal ArticleDOI
01 Dec 1994-Nature
TL;DR: The ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot.
Abstract: The mechanisms that balance food intake and energy expenditure determine who will be obese and who will be lean. One of the molecules that regulates energy balance in the mouse is the obese (ob) gene. Mutation of ob results in profound obesity and type II diabetes as part of a syndrome that resembles morbid obesity in humans. The ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot.

12,394 citations

Journal ArticleDOI
08 Sep 1989-Science
TL;DR: A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients.
Abstract: Overlapping complementary DNA clones were isolated from epithelial cell libraries with a genomic DNA segment containing a portion of the putative cystic fibrosis (CF) locus, which is on chromosome 7 Transcripts, approximately 6500 nucleotides in size, were detectable in the tissues affected in patients with CF The predicted protein consists of two similar motifs, each with (i) a domain having properties consistent with membrane association and (ii) a domain believed to be involved in ATP (adenosine triphosphate) binding A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients

6,731 citations

Journal ArticleDOI
01 May 1986-Nature
TL;DR: It is likely that most vertebrate genes are associated with ‘HTF islands’—DNA sequences in which CpG is abundant and non-methylated; however, highly tissue-specific genes, though, usually lack islands.
Abstract: It is likely that most vertebrate genes are associated with 'HTF islands'--DNA sequences in which CpG is abundant and non-methylated. Highly tissue-specific genes, though, usually lack islands. The contrast between islands and the remainder of the genome may identify sequences that are to be constantly available in the nucleus. DNA methylation appears to be involved in this function, rather than with activation of tissue specific genes.

3,673 citations

Journal ArticleDOI
13 Dec 1991-Science
TL;DR: In this paper, a gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line, which belongs to a family of at least three genes.
Abstract: Many human melanoma tumors express antigens that are recognized in vitro by cytolytic T lymphocytes (CTLs) derived from the tumor-bearing patient. A gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line. This gene shows no similarity to known sequences and belongs to a family of at least three genes. It is expressed by the original melanoma cells, other melanoma cell lines, and by some tumor cells of other histological types. No expression was observed in a panel of normal tissues. Antigen MZ2-E appears to be presented by HLA-A1; anti-MZ2-E CTLs of the original patient recognized two melanoma cell lines of other HLA-A1 patients that expressed the gene. Thus, precisely targeted immunotherapy directed against antigen MZ2-E could be provided to individuals identified by HLA typing and analysis of the RNA of a small tumor sample.

3,497 citations

Journal ArticleDOI
19 Jul 1990-Nature
TL;DR: A search of a 35-kilobase region of the human Y chromosome necessary for male sex determination has resulted in the identification of a new gene, termed SRY (for sex-determining region Y) and proposed to be a candidate for the elusive testis-d determining gene, TDF.
Abstract: A search of a 35-kilobase region of the human Y chromosome necessary for male sex determination has resulted in the identification of a new gene. This gene is conserved and Y-specific among a wide range of mammals, and encodes a testis-specific transcript. It shares homology with the mating-type protein, Mc, from the fission yeast Schizosaccharomyces pombe and a conserved DNA-binding motif present in the nuclear high-mobility-group proteins HMG1 and HMG2. This gene has been termed SRY (for sex-determining region Y) and proposed to be a candidate for the elusive testis-determining gene, TDF.

3,019 citations