scispace - formally typeset
Search or ask a question
Author

Michael Karin

Bio: Michael Karin is an academic researcher from University of California, San Diego. The author has contributed to research in topics: IκB kinase & Signal transduction. The author has an hindex of 236, co-authored 704 publications receiving 226485 citations. Previous affiliations of Michael Karin include Sanford-Burnham Institute for Medical Research & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: Using data from a large cohort of clinical samples including inflammatory bowel disease and CRC, and a cellular model of CRC progression mediated by cross-talk between the cancer cell and the inflammatory microenvironment, GFI1 is identified as a gating regulator responsible for a constitutively activated signalling circuit that renders CRC cells competent for metastatic spread.
Abstract: Inflammation is frequently associated with initiation, progression, and metastasis of colorectal cancer (CRC). Here, we unveil a CRC-specific metastatic programme that is triggered via the transcriptional repressor, GFI1. Using data from a large cohort of clinical samples including inflammatory bowel disease and CRC, and a cellular model of CRC progression mediated by cross-talk between the cancer cell and the inflammatory microenvironment, we identified GFI1 as a gating regulator responsible for a constitutively activated signalling circuit that renders CRC cells competent for metastatic spread. Further analysis of mouse models with metastatic CRC and human clinical specimens reinforced the influence of GFI1 downregulation in promoting CRC metastatic spread. The novel role of GFI1 is uncovered for the first time in a human solid tumour such as CRC. Our results imply that GFI1 is a potential therapeutic target for interfering with inflammation-induced CRC progression and spread.

18 citations

Journal ArticleDOI
TL;DR: This is the first study to treat patients prior to surgical prostate removal with an immunotherapy that targets B-cells, demonstrating inter-dependence between B- and T-cells in prostate cancer and that Rituximab can modify the immune environment in prostate tumors.
Abstract: Immunotherapeutic regulation of the tumor microenvironment in prostate cancer patients is not understood. Most antibody immunotherapies have not succeeded in prostate cancer. We showed previously that high-risk PCa patients have a higher density of tumor infiltrating B-cells in prostatectomy specimens. In mouse models, anti-CD20 antibody ablation of B-cells delayed PCa regrowth post-treatment. We sought to determine whether neoadjuvant anti-CD20 immunotherapy with rituximab could reduce CD20+ B cell infiltration of prostate tumors in patients. An open label, single arm clinical trial enrolled eight high-risk PCa patients to receive one cycle of neoadjuvant rituximab prior to prostatectomy. Eleven clinical specimens with similar characteristics were selected as controls. Treated and control samples were concurrently stained for CD20 and digitally scanned in a blinded fashion. A new method of digital image quantification of lymphocytes was applied to prostatectomy sections of treated and control cases. CD20 density was quantified by a deconvolution algorithm in pathologist-marked tumor and adjacent regions. Statistical significance was assessed by one sided Welch’s t-test, at 0.05 level using a gatekeeper strategy. Secondary outcomes included CD3+ T-cell and PD-L1 densities. Mean CD20 density in the tumor regions of the treated group was significantly lower than the control group (p = 0.02). Mean CD3 density in the tumors was significantly decreased in the treated group (p = 0.01). CD20, CD3 and PD-L1 staining primarily occurred in tertiary lymphoid structures (TLS). Neoadjuvant rituximab was well-tolerated and decreased B-cell and T-cell density within high-risk PCa tumors compared to controls. This is the first study to treat patients prior to surgical prostate removal with an immunotherapy that targets B-cells. Rituximab treatment reduced tumor infiltrating B and T-cell density especially in TLSs, thus, demonstrating inter-dependence between B- and T-cells in prostate cancer and that Rituximab can modify the immune environment in prostate tumors. Future studies will determine who may benefit from using rituximab to improve their immune response against prostate cancer. Trial registration NCT01804712, March 5th, 2013 https://clinicaltrials.gov/ct2/show/NCT01804712?cond=NCT01804712&draw=2&rank=1

18 citations

Journal ArticleDOI
TL;DR: It is concluded that IKK maintains gut function by inhibiting JNKosphorylation, which suppresses p38 phosphorylation and induces gut damage, taken together with the enhanced thermal injury–induced gut damage by p38 inhibition.
Abstract: Objective The molecular mechanism of major burn-induced gut damage is not clear. This study is to determine whether IkappaB-kinase (IKK)/nuclear factor-kappaB signaling in intestinal mucosa maintains gut function through the regulation of the c-Jun NH2-terminal kinase (JNK) and p38 phosphorylation. Design Prospective, experimental study. Setting Research laboratory at a university hospital. Subjects Thermal injury models in mice. Interventions Conditional intestinal epithelial cell IKKbeta knockout (Vil-Cre/Ikkbeta(F/Delta) mice and control (Ikkbeta(F/Delta) mice were subjected to 30% total body surface area third-degree burn. JNK inhibitor (SP600125) or p38 inhibitor (SB203580) was given to mice immediately after burn injury. Measurements and main results Thermal injury induced a significant increase of intestinal permeability, nuclear factor-kappaB DNA-binding activity, phosphorylated JNK, phosphorylated p38, and caspase 3 expression of intestinal mucosa in Vil-Cre/Ikkbeta(F/Delta) mice compared with those of Ikkbeta(F/Delta) mice. BCL-xL and cellular FLICE inhibitory protein, but not GADD45beta (growth arrest and DNA damage-inducing protein beta), cellular inhibitor of apoptosis 1, Bfl-1, or TRAIL, messenger RNA expression was significantly decreased in Vil-Cre/Ikkbeta(F/Delta) mice compared with that of Ikkbeta(F/Delta) mice. SP600125 decreased intestinal permeability and increased phosphorylated p38 and tumor necrosis factor receptor-associated factor 2 expression of intestinal mucosa in Vil-Cre/Ikkbeta(F/Delta) mice. SB203580 treatment enhanced thermal injury-induced gut damage in Vil-Cre/Ikkbeta(F/Delta) mice. Conclusions Thermal injury induces nuclear factor-kappaB activation of intestinal mucosa and IKK protects intestinal mucosa from thermal injury-induced gut damage. IKK blocks caspase 3 expression by up-regulating BCL-xL and cellular FLICE inhibitory protein expression. IKK inhibits JNK and p38 but not p44/42 phosphorylation of intestinal mucosa. JNK inhibition increases p38 and tumor necrosis factor receptor-associated factor 2 expression and decreases thermal injury-induced gut damage. Taken together with the enhanced thermal injury-induced gut damage by p38 inhibition, we conclude that IKK maintains gut function by inhibiting JNK phosphorylation, which suppresses p38 phosphorylation and induces gut damage.

17 citations

Journal ArticleDOI
10 Aug 2017-PLOS ONE
TL;DR: Striking gender differences in regulation by IKKβ of high cholesterol saturated fat diet-induced metabolic changes including NASH are demonstrated and suggest hepatocyte IKK β is protective in male due at least in part to its ability to repress LXR-induced Sult1e1.
Abstract: Myeloid cell and hepatocyte IKKβ may mediate the genesis of obesity and insulin resistance in mice fed high fat diet. However, their gender-specific roles in the pathogenesis of non-alcoholic steatohepatitis (NASH) are not known. Here we demonstrate myeloid IKKβ deficiency prevents Western diet-induced obesity and visceral adiposity in females but not in males, and attenuates hyperglycemia, global IR, and NASH in both genders. In contrast, all metabolic sequela including NASH are aggravated by hepatocyte IKKβ deficiency (IkbkbΔhep) in male but not female mice. Gene profiling identifies sulfotransferase family 1E (Sult1e1), which encodes a sulfotransferase E1 responsible for inactivation of estrogen, as a gene upregulated in NASH in both genders and most conspicuously in male IkbkbΔhep mice having worst NASH and lowest plasma estradiol levels. LXRα is enriched to LXRE on Sult1e1 promoter in male WT and IkbkbΔhep mice with NASH, and a Sult1e1 promoter activity is increased by LXRα and its ligand and augmented by expression of a S32A mutant of IκBα. These results demonstrate striking gender differences in regulation by IKKβ of high cholesterol saturated fat diet-induced metabolic changes including NASH and suggest hepatocyte IKKβ is protective in male due at least in part to its ability to repress LXR-induced Sult1e1. Our findings also raise a caution for systemic IKK inhibition for the treatment of NASH as it may exacerbate the disease in male patients.

17 citations

Journal ArticleDOI
TL;DR: A derivative of c-Jun is constructed that binds DNA as a monomer and can activate transcription in vivo, indicating that the polypeptide backbone of the basic region contributes little to sequence recognition and that the leucine zipper is not directly involved in transcriptional activation.
Abstract: c-Jun is a typical member of the bZIP (basic zipper) family of dimeric transcriptional activators. These proteins contain a basic region responsible for DNA sequence recognition and a leucine zipper that mediates dimerization. bZIP proteins regulate a large number of important physiological functions and, therefore, present an interesting target for molecular interference and mimicry. As a step toward the development of peptide and nonpeptide analogs of such proteins, we constructed a derivative of c-Jun that binds DNA as a monomer. This construction was done by connecting a second basic region to the natural basic region of c-Jun by means of a short peptide loop. Although the polypeptide backbone of the second basic region has an inverted polarity relative to that of the natural basic region, the monomeric c-Jun protein binds DNA with reasonably high affinity and indistinguishable specificity from the wild-type, dimeric c-Jun protein. Furthermore, the monomeric c-Jun protein can activate transcription in vivo. These findings indicate that the polypeptide backbone of the basic region contributes little to sequence recognition and that the leucine zipper is not directly involved in transcriptional activation.

17 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations