scispace - formally typeset
Search or ask a question
Author

Michael Karin

Bio: Michael Karin is an academic researcher from University of California, San Diego. The author has contributed to research in topics: IκB kinase & Signal transduction. The author has an hindex of 236, co-authored 704 publications receiving 226485 citations. Previous affiliations of Michael Karin include Sanford-Burnham Institute for Medical Research & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: Deletion of Jnk1 in the nonhematopoietic compartment protects mice from high-fat diet (HFD)-induced insulin resistance, in part through decreased adiposity, and confers protection against HFD- induced insulin resistance by decreasing obesity-induced inflammation.

500 citations

Journal ArticleDOI
TL;DR: The results show the dual function of the NF-κB system, which is responsible for both tissue protection and systemic inflammation, and underscore the caution that should be exerted in using NF-β and IKK inhibitors.
Abstract: We studied the role of NF-kappaB in acute inflammation caused by gut ischemia-reperfusion through selective ablation of IkappaB kinase (IKK)-beta, the catalytic subunit of IKK that is essential for NF-kappaB activation. Ablation of IKK-beta in enterocytes prevented the systemic inflammatory response, which culminates in multiple organ dysfunction syndrome (MODS) that is normally triggered by gut ischemia-reperfusion. IKK-beta removal from enterocytes, however, also resulted in severe apoptotic damage to the reperfused intestinal mucosa. These results show the dual function of the NF-kappaB system, which is responsible for both tissue protection and systemic inflammation, and underscore the caution that should be exerted in using NF-kappaB and IKK inhibitors.

496 citations

Journal ArticleDOI
20 Sep 2002-Science
TL;DR: It is found that B. anthracis lethal factor selectively induces apoptosis of activated macrophages by cleaving the amino-terminal extension of mitogen-activated protein kinase (MAPK) kinases (MKKs) that activate p38 MAPKs.
Abstract: The bacterium Bacillus anthracis causes the death of macrophages, which may allow it to avoid detection by the innate immune system. We found that B. anthracis lethal factor (LF) selectively induces apoptosis of activated macrophages by cleaving the amino-terminal extension of mitogen-activated protein kinase (MAPK) kinases (MKKs) that activate p38 MAPKs. Because macrophages that are deficient in transcription factor nuclear factor κB (NF-κB) are also sensitive to activation-induced death and p38 is required for expression of certain NF-κB target genes, p38 is probably essential for synergistic induction of those NF-κB target genes that prevent apoptosis of activated macrophages. This dismantling of the p38 MAPK module represents a strategy used by B. anthracis to paralyze host innate immunity.

495 citations

Journal ArticleDOI
TL;DR: The role of TNF and IL-6 as master regulators of tumour-associated inflammation and tumourigenesis makes them attractive targets for adjuvant treatment in cancer.
Abstract: Up to 20% of all cancers arise in association with chronic inflammation and most, if not all, solid tumours contain inflammatory infiltrates. Immune cells have a broad impact on tumour initiation, growth and progression and many of these effects are mediated by proinflammatory cytokines. Among these cytokines, the pro-tumourogenic function of tumour necrosis factor (TNF) and interleukin 6 (IL-6) is well established. The role of TNF and IL-6 as master regulators of tumour-associated inflammation and tumourigenesis makes them attractive targets for adjuvant treatment in cancer.

492 citations

Journal ArticleDOI
TL;DR: A mouse model recapitulating key features of human metabolic syndrome, NASH, and HCC by long-term feeding of a choline-deficient high-fat diet is developed, demonstrating that distinct molecular mechanisms determine NASH and H CC development.

489 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations