scispace - formally typeset
Search or ask a question
Author

Michael Karin

Bio: Michael Karin is an academic researcher from University of California, San Diego. The author has contributed to research in topics: IκB kinase & Signal transduction. The author has an hindex of 236, co-authored 704 publications receiving 226485 citations. Previous affiliations of Michael Karin include Sanford-Burnham Institute for Medical Research & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
29 Nov 1996-Cell
TL;DR: Substrates such as JunD can be phosphorylated by JNK through heterodimerization with docking competent partners, which can affect the recognition of transcription factors by signal-regulated protein kinases.

489 citations

Journal ArticleDOI
TL;DR: A portrait of the HECT E3s is provided, through the development of small-molecule inhibitors, as an anticancer therapeutic strategy, to link the substrate specificity of HECT-type E 3s with their contribution to tumorigenesis.

488 citations

Journal ArticleDOI
TL;DR: Oligomerization of the TRAF2 effector domain results in specific binding to MEKK1, a protein kinase capable of JNK, p38, and IKK activation, and induction of TNF-alpha and IL-1 responsive genes.
Abstract: Interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) stimulate transcription factors AP-1 and NF-kappaB through activation of the MAP kinases JNK and p38 and the IkappaB kinase (IKK), respectively. The TNF-alpha and IL-1 signals are transduced through TRAF2 and TRAF6, respectively. Overexpressed TRAF2 or TRAF6 activate JNK, p38, or IKK in the absence of extracellular stimulation. By replacing the carboxy-terminal TRAF domain of TRAF2 and TRAF6 with repeats of the immunophilin FKBP12, we demonstrate that their effector domains are composed of their amino-terminal Zn and RING fingers. Oligomerization of the TRAF2 effector domain results in specific binding to MEKK1, a protein kinase capable of JNK, p38, and IKK activation, and induction of TNF-alpha and IL-1 responsive genes. TNF-alpha also enhances the binding of native TRAF2 to MEKK1 and stimulates the kinase activity of the latter. Thus, TNF-alpha and IL-1 signaling is based on oligomerization of TRAF2 and TRAF6 leading to activation of effector kinases.

487 citations

Journal ArticleDOI
TL;DR: The JNK- to-c-Jun-to-FasL pathway is an important mediator of stress-induced neuronal apoptosis and is used to understand how JNK activation leads to apoptosis.
Abstract: The JNK pathway modulates AP-1 activity. While in some cells it may have proliferative and protective roles, in neuronal cells it is involved in apoptosis in response to stress or withdrawal of survival signals. To understand how JNK activation leads to apoptosis, we used PC12 cells and primary neuronal cultures. In PC12 cells, deliberate JNK activation is followed by induction of Fas ligand (FasL) expression and apoptosis. JNK activation detected by c-Jun phosphorylation and FasL induction are also observed after removal of either nerve growth factor from differentiated PC12 cells or KCl from primary cerebellar granule neurons (CGCs). Sequestation of FasL by incubation with a Fas-Fc decoy inhibits apoptosis in all three cases. CGCs derived from gld mice (defective in FasL) are less sensitive to apoptosis caused by KCl removal than wild-type neurons. In PC12 cells, protection is also conferred by a c-Jun mutant lacking JNK phosphoacceptor sites and a small molecule inhibitor of p38 mitogen-activated protein kinase and JNK, which inhibits FasL induction. Hence, the JNK-to-c-Jun-to-FasL pathway is an important mediator of stress-induced neuronal apoptosis.

485 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations