scispace - formally typeset
Search or ask a question
Author

Michael Karin

Bio: Michael Karin is an academic researcher from University of California, San Diego. The author has contributed to research in topics: IκB kinase & Signal transduction. The author has an hindex of 236, co-authored 704 publications receiving 226485 citations. Previous affiliations of Michael Karin include Sanford-Burnham Institute for Medical Research & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on recent advances in understanding how extracellular stimuli modulate the attachment of ubiquitin and Ubiquitin-like peptides to target proteins.

157 citations

Journal ArticleDOI
TL;DR: In murine models, inhibition of IKKβ-dependent NF-κB activation exacerbates acute inflammation, but attenuates chronic inflammatory disease in the intestinal tract, highlighting the striking context and tissue dependence of the proinflammatory and antiapoptotic functions of NF-σκB.
Abstract: NF-κB is a key transcriptional regulator of inflammatory responses, but also controls expression of prosurvival genes, whose products protect tissues from damage and may thus act indirectly in an antiinflammatory fashion. The variable importance of these two distinct NF-κB-controlled responses impacts the potential utility of NF-κB inhibition as a treatment strategy for intractable inflammatory conditions, such as inflammatory bowel disease. Here, we show in murine models that inhibition of IKKβ-dependent NF-κB activation exacerbates acute inflammation, but attenuates chronic inflammatory disease in the intestinal tract. Acute ulcerating inflammation is aggravated because of diminished NF-κB-mediated protection against epithelial cell apoptosis and delayed mucosal regeneration secondary to reduced NF-κB-dependent recruitment of inflammatory cells that secrete cytoprotective factors. In contrast, in IL-10-deficient mice, which serve as a model of chronic T cell-dependent colitis, ablation of IKKβ in the intestinal epithelium has no impact, yet IKKβ deficiency in myeloid cells attenuates inflammation and prolongs survival. These results highlight the striking context and tissue dependence of the proinflammatory and antiapoptotic functions of NF-κB. Our findings caution against the therapeutic use of IKKβ/NF-κB inhibitors in acute inflammatory settings dominated by cell loss and ulceration.

156 citations

Journal ArticleDOI
TL;DR: A new signaling cascade composed of Sestrin2-GATOR2- GATOR1-RagB that mediates stress-dependent suppression of mTORC1 activity is elucidated.
Abstract: Sestrins are stress-inducible metabolic regulators that suppress a wide range of age- and obesity-associated pathologies, many of which are due to mTORC1 overactivation. Upon various stresses, the Sestrins inhibit mTORC1 activity through an indirect mechanism that is still unclear. GATORs are recently identified protein complexes that regulate the activity of RagB, a small GTPase essential for mTORC1 activation. GATOR1 is a GTPase activating protein (GAP) for RagB whereas GATOR2 functions as an inhibitor of GATOR1. However, how the GATORs are physiologically regulated is unknown. Here we show that Sestrin2 binds to GATOR2, and liberates GATOR1 from GATOR2-mediated inhibition. Released GATOR1 subsequently binds to and inactivates RagB, ultimately resulting in mTORC1 suppression. Consistent with this biochemical mechanism, genetic ablation of GATOR1 nullifies the mTORC1-inhibiting effect of Sestrin2 in both cell culture and Drosophila models. Collectively, we elucidate a new signaling cascade composed of Sestrin2-GATOR2-GATOR1-RagB that mediates stress-dependent suppression of mTORC1 activity.

156 citations

Journal ArticleDOI
TL;DR: Results suggest that site-specific phosphorylations of LAP modulate transactivation of its target genes.
Abstract: LAP (NF-IL6 or C/EBP beta), is a liver transcriptional activator protein that confers liver-specific gene expression. Because LAP has a characteristic phosphoacceptor sequence for cAMP-dependent protein kinase A (PKA), we tested if in vitro phosphorylation of LAP by PKA modulates its interaction with specific DNA sequences. The major PKA phosphorylation site of LAP was identified as Ser105, which is a predicted PKA site. As expected, this PKA phosphorylation site disappears after mutation of Ser105 to Ala. Kinetic studies with LAP and LAP Asp105 (which mimics a phosphoserine residue) demonstrated that phosphorylation of Ser105 itself has no effect on DNA binding. Phosphorylation of other sites by PKA, identified in the region between Ser173 and Ser223 and at Ser240, by analysis of truncated and mutated LAP peptides, resulted in an inhibition of DNA binding. LAP was also phosphorylated by purified protein kinase C in vitro, and the major phosphoacceptor was shown to be Ser240 within the DNA-binding domain of LAP. Phosphorylation of LAP at this residue or introduction of a Ser240 to Asp mutation resulted in marked decrease in its binding to DNA. These results suggest that site-specific phosphorylations of LAP modulate transactivation of its target genes.

155 citations

Journal ArticleDOI
TL;DR: This article showed that NF-kappaB DNA-binding activity is detected in both mammary carcinoma cell lines and primary human breast cancer tissues and there are strong suggestions that NF plays an important role in the etiology of breast cancer.
Abstract: Nuclear factor of kappaB (NF-kappaB) is a group of sequence-specific transcription factors that is best known as a key regulator of the inflammatory and innate immune responses. Recent studies of genetically engineered mice have clearly indicated that NF-kappaB is also required for proper organogenesis of several epithelial tissues, including the mammary gland. Mice have shown severe lactation deficiency when NF-kappaB activation is specifically blocked in the mammary gland. In addition, there are strong suggestions that NF-kappaB may play an important role in the etiology of breast cancer. Elevated NF-kappaB DNA-binding activity is detected in both mammary carcinoma cell lines and primary human breast cancer tissues.

153 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations