scispace - formally typeset
Search or ask a question
Author

Michael Karin

Bio: Michael Karin is an academic researcher from University of California, San Diego. The author has contributed to research in topics: IκB kinase & Signal transduction. The author has an hindex of 236, co-authored 704 publications receiving 226485 citations. Previous affiliations of Michael Karin include Sanford-Burnham Institute for Medical Research & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that several treatments that block CXCL13 expression, including immunodepletion of myofibroblasts, blockade of TGF-β signaling, and phosphodiesterase-5 (PDE5) inhibitors, inhibit B-cell recruitment into androgen-deprived prostate tumors and prevent the emergence of a more aggressive type of cancer.
Abstract: Prostate cancer (PC) is a slowly progressing malignancy that often responds to androgen ablation or chemotherapy by becoming more aggressive, acquiring a neuroendocrine phenotype, and undergoing metastatic spread. We found that B lymphocytes recruited into regressing androgen-deprived tumors by C-X-C motif chemokine 13 (CXCL13), a chemokine whose expression correlates with clinical severity, play an important role in malignant progression and metastatic dissemination of PC. We now describe how androgen ablation induces CXCL13 expression. In both allografted and spontaneous mouse PC, CXCL13 is expressed by tumor-associated myofibroblasts that are activated on androgen ablation through a hypoxia-dependent mechanism. The same cells produce CXCL13 after chemotherapy. Myofibroblast activation and CXCL13 expression also occur in the normal prostate after androgen deprivation, and CXCL13 is expressed by myofibroblasts in human PC. Hypoxia activates hypoxia-inducible factor 1 (HIF-1) and induces autocrine TGF-β signaling that promotes myofibroblast activation and CXCL13 induction. In addition to TGF-β receptor kinase inhibitors, myofibroblast activation and CXCL13 induction are blocked by phosphodiesterase 5 (PDE5) inhibitors. Both inhibitor types and myofibroblast immunodepletion block the emergence of castration-resistant PC in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of spontaneous metastatic PC with neuroendocrine differentiation.

153 citations

Journal ArticleDOI
TL;DR: It is demonstrated that Tax triggers activation of cellular protein kinases, IκB kinase α (IKKα) and IKKβ, which phosphorylate the NF-κB inhibitory protein IKKBα, resulting in its degradation and NF-σκB activation.

152 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the TNF-induced interaction between IKKγ and the death domain kinase RIP is TRAf2 dependent and that one possible function of this interaction is to stabilize the IKK complex when it interacts with TRAF2.
Abstract: The activation of IκB kinase (IKK) is a key step in the nuclear translocation of the transcription factor NF-κB. IKK is a complex composed of three subunits: IKKα, IKKβ, and IKKγ (also called NEMO). In response to the proinflammatory cytokine tumor necrosis factor (TNF), IKK is activated after being recruited to the TNF receptor 1 (TNF-R1) complex via TNF receptor-associated factor 2 (TRAF2). We found that the IKKα and IKKβ catalytic subunits are required for IKK-TRAF2 interaction. This interaction occurs through the leucine zipper motif common to IKKα, IKKβ, and the RING finger domain of TRAF2, and either IKKα or IKKβ alone is sufficient for the recruitment of IKK to TNF-R1. Importantly, IKKγ is not essential for TNF-induced IKK recruitment to TNF-R1, as this occurs efficiently in IKKγ-deficient cells. Using TRAF2−/− cells, we demonstrated that the TNF-induced interaction between IKKγ and the death domain kinase RIP is TRAF2 dependent and that one possible function of this interaction is to stabilize the IKK complex when it interacts with TRAF2.

152 citations

Journal Article
TL;DR: The mechanism by which RA inhibits induction of collagenase gene transcription by inflammatory mediators, tumor promoters, and proto-oncogenes is investigated and it is found that the RA receptors (RARs) are potent inhibitors of AP-1 activity generated either by cJun homodimers or cJun/cFos heterodIMers.
Abstract: Retinoids such as retinoic acid (RA) are potent anti-arthritic and anti-neoplastic agents. We investigated the mechanism by which RA inhibits induction of collagenase gene transcription by inflammatory mediators, tumor promoters, and proto-oncogenes. We found that the RA receptors (RARs) are potent inhibitors of AP-1 activity generated either by cJun homodimers or cJun/cFos heterodimers. In addition, both cJun and cFos can inhibit RAR activity. In vitro experiments suggested that this inhibition is due to an interaction between RAR and AP-1 proteins that results in mutual loss of DNA-binding activity. The RARs need not bind to the AP-1 site, neither does AP-1 bind to RA response elements. An understanding of this antagonism between the RAR and AP-1 might help to elucidate the anti-neoplastic and anti-arthritic effects of RA as well as its effects on cell differentiation and proliferation.

152 citations

Journal ArticleDOI
TL;DR: It is suggested that RA inhibits collagenase transcription at least in part through inhibition of c-fos, which plays a major role in cartilage and bone destruction in rheumatoid arthritis.
Abstract: Collagenase production by synovial fibroblast-like cells (synoviocytes) plays a major role in cartilage and bone destruction in rheumatoid arthritis. Interleukin-1 (IL-1) increases collagenase secretion by elevating the steady state levels of collagenase mRNA in cultured rheumatoid synoviocytes, while all-trans-retinoic acid (RA) has the opposite effect. We have studied the regulation of collagenase gene transcription by IL-1 and RA in synoviocytes by transient transfection of plasmid constructs containing deletion mutants of the 5'-flanking region of the collagenase gene or the isolated phorbol ester-responsive element ligated to a chloramphenicol acetyltransferase reporter gene. We show that the phorbol ester-responsive element of the collagenase gene mediates both positive and negative regulatory effects, respectively, of IL-1 and RA on transcription. In addition, we show that IL-1 and 12-O-tetradecanoyl-phorbol-13-acetate transiently induce c-jun and c-fos expression and that retinoic acid inhibits IL-1 and 12-O-tetradecanoyl-phorbol-13-acetate induction of c-fos, but not c-jun. These results suggest that RA inhibits collagenase transcription at least in part through inhibition of c-fos.

150 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations