scispace - formally typeset
Search or ask a question
Author

Michael Karpelson

Bio: Michael Karpelson is an academic researcher from Harvard University. The author has contributed to research in topics: Power electronics & Energy source. The author has an hindex of 15, co-authored 28 publications receiving 1297 citations. Previous affiliations of Michael Karpelson include Wyss Institute for Biologically Inspired Engineering.

Papers
More filters
Journal ArticleDOI
01 Jun 2019-Nature
TL;DR: This insect-scale aerial vehicle is the lightest thus far to achieve sustained untethered flight (as opposed to impulsive jumping8 or liftoff) and matches the thrust efficiency of similarly sized insects such as bees.
Abstract: Heavier-than-air flight at any scale is energetically expensive. This is greatly exacerbated at small scales and has so far presented an insurmountable obstacle for untethered flight in insect-sized (mass less than 500 milligrams and wingspan less than 5 centimetres) robots. These vehicles1–4 thus need to fly tethered to an offboard power supply and signal generator owing to the challenges associated with integrating onboard electronics within a limited payload capacity. Here we address these challenges to demonstrate sustained untethered flight of an insect-sized flapping-wing microscale aerial vehicle. The 90-milligram vehicle uses four wings driven by two alumina-reinforced piezoelectric actuators to increase aerodynamic efficiency (by up to 29 per cent relative to similar two-wing vehicles5) and achieve a peak lift-to-weight ratio of 4.1 to 1, demonstrating greater thrust per muscle mass than typical biological counterparts6. The integrated system of the vehicle together with the electronics required for untethered flight (a photovoltaic array and a signal generator) weighs 259 milligrams, with an additional payload capacity allowing for additional onboard devices. Consuming only 110–120 milliwatts of power, the system matches the thrust efficiency of similarly sized insects such as bees7. This insect-scale aerial vehicle is the lightest thus far to achieve sustained untethered flight (as opposed to impulsive jumping8 or liftoff9). Sustained flight of an insect-sized flapping-wing aerial vehicle weighing just 259 milligrams that does not need to fly tethered to an off-board power supply is demonstrated.

307 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe electrical characteristics and drive requirements of low mass piezoelectric actuators, the design and optimization of suitable drive circuit topologies, aspects of the physical instantiation of these topologies including the fabrication of extremely lightweight magnetic components, and a custom, ultra low power integrated circuit that implements control functionality for the drive circuits.
Abstract: Piezoelectric actuators have been used successfully to enable locomotion in aerial and ambulatory microrobotic platforms. However, the use of piezoelectric actuators presents two major challenges for power electronic design: generating high-voltage drive signals in systems typically powered by low-voltage energy sources, and recovering unused energy from the actuators. Due to these challenges, conventional drive circuits become too bulky or inefficient in low mass applications. This work describes electrical characteristics and drive requirements of low mass piezoelectric actuators, the design and optimization of suitable drive circuit topologies, aspects of the physical instantiation of these topologies, including the fabrication of extremely lightweight magnetic components, and a custom, ultra low power integrated circuit that implements control functionality for the drive circuits. The principles and building blocks presented here enable efficient high-voltage drive circuits that can satisfy the stringent weight and power requirements of microrobotic applications.

223 citations

Proceedings ArticleDOI
19 May 2008
TL;DR: This paper explores the design space of flapping-wing microrobots weighing lg and under by determining mechanical requirements for the actuation mechanism, analyzing potential actuation technologies, and discussing the design and realization of the required power electronics.
Abstract: Flapping-wing robotic insects require actuators with high power densities at centimeter to micrometer scales. Due to the low weight budget, the selection and design of the actuation mechanism needs to be considered in parallel with the design of the power electronics required to drive it. This paper explores the design space of flapping-wing microrobots weighing lg and under by determining mechanical requirements for the actuation mechanism, analyzing potential actuation technologies, and discussing the design and realization of the required power electronics. Promising combinations of actuators and power circuits are identified and used to estimate microrobot performance.

175 citations

Proceedings ArticleDOI
06 Nov 2014
TL;DR: An untethered soft-bodied robot that uses a combination of pneumatic and explosive actuators to execute directional jumping maneuvers and a thermodynamic model for the combustion of butane used to power jumping is presented.
Abstract: Locomoting soft robots typically walk or crawl slowly relative to their rigid counterparts. In order to execute agile behaviors such as jumping, rapid actuation modes are required. Here we present an untethered soft-bodied robot that uses a combination of pneumatic and explosive actuators to execute directional jumping maneuvers. This robot can autonomously jump up to 0.6 meters laterally with an apex of up to 0.6 meters (7.5 times it's body height) and can achieve targeted jumping onto an object. The robot is able to execute these directed jumps while carrying the required fuel, pneumatics, control electronics, and battery. We also present a thermodynamic model for the combustion of butane used to power jumping, and calculate the theoretical maximum work output for the design. From experimental results, we find the mechanical efficiency of this prototype to be 0.8%.

140 citations

Journal ArticleDOI
TL;DR: Progress is presented in the essential technologies for insect-scale robots, or ‘pico’ air vehicles, as the characteristic size of a flying robot decreases.
Abstract: As the characteristic size of a flying robot decreases, the challenges for successful flight revert to basic questions of fabrication, actuation, fluid mechanics, stabilization, and power, whereas such questions have in general been answered for larger aircraft. When developing a flying robot on the scale of a common housefly, all hardware must be developed from scratch as there is nothing 'off-the-shelf' which can be used for mechanisms, sensors, or computation that would satisfy the extreme mass and power limitations. This technology void also applies to techniques available for fabrication and assembly of the aeromechanical components: the scale and complexity of the mechanical features requires new ways to design and prototype at scales between macro and microeletromechanical systems, but with rich topologies and material choices one would expect when designing human-scale vehicles. With these challenges in mind, we present progress in the essential technologies for insect-scale robots, or 'pico' air vehicles.

117 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: This Review discusses recent developments in the emerging field of soft robotics, and explores the design and control of soft-bodied robots composed of compliant materials.
Abstract: Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

3,824 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: This work identifies scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.
Abstract: We are witnessing the advent of a new era of robots - drones - that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.

956 citations

Journal ArticleDOI
03 May 2013-Science
TL;DR: An 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies is built and demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers, which validates a sufficient suite of innovations for achieving artificial, insects-like flight.
Abstract: Flies are among the most agile flying creatures on Earth To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers The result validates a sufficient suite of innovations for achieving artificial, insect-like flight

929 citations

Journal ArticleDOI
TL;DR: This review paper identifies a novel classification of flying drones that ranges from unmanned air vehicles to smart dusts at both ends of this spectrum, with their new defined applications.

828 citations