scispace - formally typeset
Search or ask a question
Author

Michael L. Summers

Other affiliations: Montana State University
Bio: Michael L. Summers is an academic researcher from California State University, Northridge. The author has contributed to research in topics: Nostoc punctiforme & Hormogonium. The author has an hindex of 14, co-authored 23 publications receiving 769 citations. Previous affiliations of Michael L. Summers include Montana State University.

Papers
More filters
Journal ArticleDOI
TL;DR: The regulatory circuits of three cellular differentiation events and symbiotic interactions of N. punctiforme can be experimentally analyzed by functional genomics and hypothesized to depart from the vegetative cell cycle following separate and distinct events.
Abstract: Nostoc punctiforme is a phenotypically complex, filamentous, nitrogen-fixing cyanobacterium, whose vegetative cells can mature in four developmental directions. The particular developmental direction is determined by environmental signals. The vegetative cell cycle is maintained when nutrients are sufficient. Limitation for combined nitrogen induces the terminal differentiation of heterocysts, cells specialized for nitrogen fixation in an oxic environment. A number of unique regulatory events and genes have been identified and integrated into a working model of heterocyst differentiation. Phosphate limitation induces the transient differentiation of akinetes, spore-like cells resistant to cold and desiccation. A variety of environmental changes, both positive and negative for growth, induce the transient differentiation of hormogonia, motile filaments that function in dispersal. Initiation of the differentiation of heterocysts, akinetes and hormogonia are hypothesized to depart from the vegetative cell cycle, following separate and distinct events. N. punctiforme also forms nitrogen-fixing symbiotic associations; its plant partners influence the differentiation and behavior of hormogonia and heterocysts. N. punctiforme is genetically tractable and its genome sequence is nearly complete. Thus, the regulatory circuits of three cellular differentiation events and symbiotic interactions of N. punctiforme can be experimentally analyzed by functional genomics.

162 citations

Journal ArticleDOI
TL;DR: The differentiation of heterocysts (steady state, N(2) grown), akinetes, and hormogonia appears to involve the up-regulation of genes distinct for each state, consistent with entry into a nongrowth state.
Abstract: The vegetative cells of the filamentous cyanobacterium Nostoc punctiforme can differentiate into three mutually exclusive cell types: nitrogen-fixing heterocysts, spore-like akinetes, and motile hormogomium filaments. A DNA microarray consisting of 6,893 N. punctiforme genes was used to identify the global transcription patterns at single time points in the three developmental states, compared to those in ammonium-grown time zero cultures. Analysis of ammonium-grown cultures yielded a transcriptome of 2,935 genes, which is nearly twice the size of a soluble proteome. The NH4+-grown transcriptome was enriched in genes encoding core metabolic functions. A steady-state N2-grown (heterocyst-containing) culture showed differential transcription of 495 genes, 373 of which were up-regulated. The majority of the up-regulated genes were predicted from studies of heterocyst differentiation and N2 fixation; other genes are candidates for more detailed genetic analysis. Three days into the developmental process, akinetes showed a similar number of differentially expressed genes (497 genes), which were equally up- and down-regulated. The down-regulated genes were enriched in core metabolic functions, consistent with entry into a nongrowth state. There were relatively few adaptive genes up-regulated in 3-day akinetes, and there was little overlap with putative heterocyst developmental genes. There were 1,827 differentially transcribed genes in 24-h hormogonia, which was nearly fivefold greater than the number in akinete-forming or N2-fixing cultures. The majority of the up-regulated adaptive genes were genes encoding proteins for signal transduction and transcriptional regulation, which is characteristic of a motile filament that is poised to sense and respond to the environment. The greatest fraction of the 883 down-regulated genes was involved in core metabolism, also consistent with entry into a nongrowth state. The differentiation of heterocysts (steady state, N2 grown), akinetes, and hormogonia appears to involve the up-regulation of genes distinct for each state.

118 citations

Book ChapterDOI
01 Jan 2010
TL;DR: This review focuses on akinetes of Nostocales, emphasizing environmental triggers and cellular responses involved in differentiation, maturation, dormancy, and germination of these resting cells and special attention is given to genetic regulation of the differentiation process.
Abstract: Cyanobacteria are an ancient and morphologically diverse group of photosynthetic prokaryotes, which were the first to evolve oxygenic photosynthesis. Cyanobacteria are widely distributed in diversed environments. In the case of members of the orders Nostocales and Stigonematales, their persistence and success were attributed to their ability to form specialized cells: heterocysts, capable of fixing atmospheric nitrogen and spore-like cells, the akinetes. This review focuses on akinetes of Nostocales, emphasizing environmental triggers and cellular responses involved in differentiation, maturation, dormancy, and germination of these resting cells. Morphological and structural changes, variation in akinete composition, and metabolism are summarized. Special attention is given to the genetic regulation of the differentiation process in an attempt to close gaps in our understanding of the dormancy phenomenon in cyanobacteria and to identify open questions for future research.

100 citations

Journal ArticleDOI
TL;DR: Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria and are the first characterization of cyanobacterial LD composition and conditions leading to their production.
Abstract: Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), α-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria.

58 citations

Journal ArticleDOI
TL;DR: Two transcriptional reporter shuttle vectors constructed for the filamentous cyanobacterium Nostoc punctiforme using the green fluorescence protein (GFP) reporter demonstrate the utility of these GFP vectors to study cell-type-specific gene expression in differentiating filamentous Cyanobacteria.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Free-living soil bacteria beneficial to plant growth, usually referred to as plant growth promoting rhizobacteria (PGPR), are capable of promoting plant growth by colonizing the plant root and can inhibit phytopathogens.
Abstract: Soil bacteria are very important in biogeochemical cycles and have been used for crop production for decades. Plant–bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Free-living soil bacteria beneficial to plant growth, usually referred to as plant growth promoting rhizobacteria (PGPR), are capable of promoting plant growth by colonizing the plant root. PGPR are also termed plant health promoting rhizobacteria (PHPR) or nodule promoting rhizobacteria (NPR). These are associated with the rhizosphere, which is an important soil ecological environment for plant–microbe interactions. Symbiotic nitrogen-fixing bacteria include the cyanobacteria of the genera Rhizobium, Bradyrhizobium, Azorhizobium, Allorhizobium, Sinorhizobium and Mesorhizobium. Free-living nitrogen-fixing bacteria or associative nitrogen fixers, for example bacteria belonging to the species Azospirillum, Enterobacter, Klebsiella and Pseudomonas, have been shown to attach to the root and efficiently colonize root surfaces. PGPR have the potential to contribute to sustainable plant growth promotion. Generally, PGPR function in three different ways: synthesizing particular compounds for the plants, facilitating the uptake of certain nutrients from the soil, and lessening or preventing the plants from diseases. Plant growth promotion and development can be facilitated both directly and indirectly. Indirect plant growth promotion includes the prevention of the deleterious effects of phytopathogenic organisms. This can be achieved by the production of siderophores, i.e. small metal-binding molecules. Biological control of soil-borne plant pathogens and the synthesis of antibiotics have also been reported in several bacterial species. Another mechanism by which PGPR can inhibit phytopathogens is the production of hydrogen cyanide (HCN) and/or fungal cell wall degrading enzymes, e.g., chitinase and s-1,3-glucanase. Direct plant growth promotion includes symbiotic and non-symbiotic PGPR which function through production of plant hormones such as auxins, cytokinins, gibberellins, ethylene and abscisic acid. Production of indole-3-ethanol or indole-3-acetic acid (IAA), the compounds belonging to auxins, have been reported for several bacterial genera. Some PGPR function as a sink for 1-aminocyclopropane-1-carboxylate (ACC), the immediate precursor of ethylene in higher plants, by hydrolyzing it into α-ketobutyrate and ammonia, and in this way promote root growth by lowering indigenous ethylene levels in the micro-rhizo environment. PGPR also help in solubilization of mineral phosphates and other nutrients, enhance resistance to stress, stabilize soil aggregates, and improve soil structure and organic matter content. PGPR retain more soil organic N, and other nutrients in the plant–soil system, thus reducing the need for fertilizer N and P and enhancing release of the nutrients.

1,430 citations

Journal ArticleDOI
TL;DR: Evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene and that acetyl∼P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis.
Abstract: To succeed, many cells must alternate between life-styles that permit rapid growth in the presence of abundant nutrients and ones that enhance survival in the absence of those nutrients. One such change in life-style, the “acetate switch,” occurs as cells deplete their environment of acetate-producing carbon sources and begin to rely on their ability to scavenge for acetate. This review explains why, when, and how cells excrete or dissimilate acetate. The central components of the “switch” (phosphotransacetylase [PTA], acetate kinase [ACK], and AMP-forming acetyl coenzyme A synthetase [AMP-ACS]) and the behavior of cells that lack these components are introduced. Acetyl phosphate (acetyl∼P), the high-energy intermediate of acetate dissimilation, is discussed, and conditions that influence its intracellular concentration are described. Evidence is provided that acetyl∼P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis. The merits of each mechanism proposed to explain the interaction of acetyl∼P with two-component signal transduction pathways are addressed. A short list of enzymes that generate acetyl∼P by PTA-ACKA-independent mechanisms is introduced and discussed briefly. Attention is then directed to the mechanisms used by cells to “flip the switch,” the induction and activation of the acetate-scavenging AMP-ACS. First, evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene. Next, the way in which cells regulate AMP-ACS activity through reversible acetylation is described. Finally, the “acetate switch” as it exists in selected eubacteria, archaea, and eukaryotes, including humans, is described.

1,138 citations

Book ChapterDOI
TL;DR: Recent work in the laboratory has shown that the conditions employed to isolate PSMs do not reflect soil conditions and that PSMs capable of effectively releasing P from soil are not so highly abundant as was suggested in earlier studies, and indicated that the mineral phosphate solubilizing ability of microbes could be linked to specific genes.
Abstract: Phosphorus (P) is one of the major plant growth-limiting nutrients although it is abundant in soils in both inorganic and organic forms. Phosphate solubilizing micro-organisms (PSMs) are ubiquitous in soils and could play an important role in supplying P to plants in a more environmentally friendly and sustainable manner. Although solubilization of P compounds by microbes is very common under laboratory conditions, results in the field have been highly variable. This variability has hampered the large-scale use of PSMs in agriculture. Many reasons have been suggested for this variability, but none of them have been extensively investigated. In spite of the importance of PSMs in agriculture, the detailed biochemical and molecular mechanisms of P solubilization are not known. Recent work in our laboratory has shown that the conditions employed to isolate PSMs do not reflect soil conditions and that PSMs capable of effectively releasing P from soil are not so highly abundant as was suggested in earlier studies. These studies have also indicated that the mineral phosphate solubilizing (mps) ability of microbes could be linked to specific genes, and that these genes are present even in non P solubilizing bacteria. Understanding the genetic basis of P solubilization could help in transforming more rhizosphere-competent bacteria into PSMs. Further research should also focus on the microbial solubilization of iron (Fe) and aluminum (Al) phosphates, as well as mobilization of the organic phosphate reserves present in the soils.

924 citations

Journal ArticleDOI
23 Mar 2006-Nature
TL;DR: An excitable core module containing positive and negative feedback loops can explain both entry into, and exit from, the competent state of Bacillus subtilis, and is found to provide an ideal mechanism for competence regulation.
Abstract: Certain types of cellular differentiation are probabilistic and transient. In such systems individual cells can switch to an alternative state and, after some time, switch back again. In Bacillus subtilis, competence is an example of such a transiently differentiated state associated with the capability for DNA uptake from the environment. Individual genes and proteins underlying differentiation into the competent state have been identified, but it has been unclear how these genes interact dynamically in individual cells to control both spontaneous entry into competence and return to vegetative growth. Here we show that this behaviour can be understood in terms of excitability in the underlying genetic circuit. Using quantitative fluorescence time-lapse microscopy, we directly observed the activities of multiple circuit components simultaneously in individual cells, and analysed the resulting data in terms of a mathematical model. We find that an excitable core module containing positive and negative feedback loops can explain both entry into, and exit from, the competent state. We further tested this model by analysing initiation in sister cells, and by re-engineering the gene circuit to specifically block exit. Excitable dynamics driven by noise naturally generate stochastic and transient responses, thereby providing an ideal mechanism for competence regulation.

767 citations

Journal ArticleDOI
TL;DR: Preliminary results achieved in the engineering of bacterial strains for improving capacity for phosphate solubilization are presented, and application of this knowledge to improving agricultural inoculants is discussed.
Abstract: Plant growth-promoting bacteria (PGPB) are soil and rhizosphere bacteria that can benefit plant growth by different mechanisms. The ability of some microorganisms to convert insoluble phosphorus (P) to an accessible form, like orthophosphate, is an important trait in a PGPB for increasing plant yields. In this mini-review, the isolation and characterization of genes involved in mineralization of organic P sources (by the action of enzymes acid phosphatases and phytases), as well as mineral phosphate solubilization, is reviewed. Preliminary results achieved in the engineering of bacterial strains for improving capacity for phosphate solubilization are presented, and application of this knowledge to improving agricultural inoculants is discussed.

698 citations