scispace - formally typeset
Search or ask a question
Author

Michael Levin

Bio: Michael Levin is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Fermion & Gauge boson. The author has an hindex of 13, co-authored 15 publications receiving 3884 citations. Previous affiliations of Michael Levin include Harvard University & University of California, Santa Barbara.

Papers
More filters
Journal ArticleDOI
TL;DR: A way to detect a kind of topological order using only the ground state wave function which directly measures the total quantum dimension D= Sum(id2i).
Abstract: A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data $(N,{d}_{i},{F}_{lmn}^{ijk},{\ensuremath{\delta}}_{ijk})$. We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the ``topological entropy'' which directly measures the total quantum dimension $D=\ensuremath{\sum}_{i}{d}_{i}^{2}$.

1,733 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that string-net condensation provides a mechanism for unifying gauge bosons and fermions in 3 and higher dimensions, and the theoretical framework underlying topological phases was revealed.
Abstract: We show that quantum systems of extended objects naturally give rise to a large class of exotic phases---namely topological phases. These phases occur when extended objects, called ``string-nets,'' become highly fluctuating and condense. We construct a large class of exactly soluble 2D spin Hamiltonians whose ground states are string-net condensed. Each ground state corresponds to a different parity invariant topological phase. The models reveal the mathematical framework underlying topological phases: tensor category theory. One of the Hamiltonians---a spin-$1∕2$ system on the honeycomb lattice---is a simple theoretical realization of a universal fault tolerant quantum computer. The higher dimensional case also yields an interesting result: we find that 3D string-net condensation naturally gives rise to both emergent gauge bosons and emergent fermions. Thus, string-net condensation provides a mechanism for unifying gauge bosons and fermions in 3 and higher dimensions.

1,245 citations

Journal ArticleDOI
TL;DR: A simple real space renormalization group technique for two-dimensional classical lattice models that is fundamentally based on the theory of quantum entanglement is described and demonstrated by computing the magnetization of the triangular lattice Ising model.
Abstract: We describe a simple real space renormalization group technique for two-dimensional classical lattice models. The approach is similar in spirit to block spin methods, but at the same time it is fundamentally based on the theory of quantum entanglement. In this sense, the technique can be thought of as a classical analogue of the density matrix renormalization group method. We demonstrate the method - which we call the tensor renormalization group method - by computing the magnetization of the triangular lattice Ising model.

441 citations

Journal ArticleDOI
TL;DR: In this paper, a generalization of two-dimensional topological insulators which can be realized in interacting, time reversal invariant electron systems is presented. But the authors focus on the case of s(z) conserving toy models and show that a system is a fractional topology insulator if and only if sigma(sH)/e* is odd.
Abstract: We analyze generalizations of two-dimensional topological insulators which can be realized in interacting, time reversal invariant electron systems. These states, which we call fractional topological insulators, contain excitations with fractional charge and statistics in addition to protected edge modes. In the case of s(z) conserving toy models, we show that a system is a fractional topological insulator if and only if sigma(sH)/e* is odd, where sigma(sH) is the spin-Hall conductance in units of e/2pi, and e* is the elementary charge in units of e.

186 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the general properties of lattice spin models with emerging fermionic excitations and showed that fermions always come in pairs and their creation operator always has a stringlike structure with the newly created particles appearing at the end points of the string.
Abstract: We investigate the general properties of lattice spin models with emerging fermionic excitations. We argue that fermions always come in pairs and their creation operator always has a stringlike structure with the newly created particles appearing at the end points of the string. The physical implication of this structure is that the fermions always couple to a nontrivial gauge field. We present exactly soluble examples of this phenomenon in two and three dimensions. Our analysis is based on an algebraic formula that relates the statistics of a lattice particle to the properties of its hopping operators. This approach has the advantage in that it works in any number of dimensions---unlike the flux-binding picture developed in fractional quantum Hall theory.

163 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the ''ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Abstract: Topological quantum computation has emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations that are necessary for quantum computation are carried out by braiding quasiparticles and then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the $\ensuremath{ u}=5∕2$ state, although several other prospective candidates have been proposed in systems as disparate as ultracold atoms in optical lattices and thin-film superconductors. In this review article, current research in this field is described, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. Both the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the $\ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.

4,457 citations

Journal ArticleDOI
TL;DR: It is argued that the entanglement entropy in d + 1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS(d+2), analogous to the Bekenstein-Hawking formula for black hole entropy.
Abstract: A holographic derivation of the entanglement entropy in quantum (conformal) field theories is proposed from anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We argue that the entanglement entropy in d + 1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS(d+2), analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our proposal agrees perfectly with the entanglement entropy in 2D CFT when applied to AdS(3). We also compare the entropy computed in AdS(5)XS(5) with that of the free N=4 super Yang-Mills theory.

4,395 citations

Journal ArticleDOI
13 Feb 2009-Science
TL;DR: This study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states in the chiral itinerant-electron magnet MnSi.
Abstract: Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortex, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.

3,651 citations