scispace - formally typeset
Search or ask a question
Author

Michael Lindenbaum

Other affiliations: Hewlett-Packard
Bio: Michael Lindenbaum is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Image segmentation & Point cloud. The author has an hindex of 33, co-authored 129 publications receiving 4644 citations. Previous affiliations of Michael Lindenbaum include Hewlett-Packard.


Papers
More filters
Journal ArticleDOI
TL;DR: A new, sequential algorithm is presented, which is faster in typical applications and is especially advantageous for image sequences: the KL basis calculation is done with much lower delay and allows for dynamic updating of image databases.
Abstract: The Karhunen-Loeve (KL) transform is an optimal method for approximating a set of vectors or images, which was used in image processing and computer vision for several tasks such as face and object recognition. Its computational demands and its batch calculation nature have limited its application. Here we present a new, sequential algorithm for calculating the KL basis, which is faster in typical applications and is especially advantageous for image sequences: the KL basis calculation is done with much lower delay and allows for dynamic updating of image databases. Systematic tests of the implemented algorithm show that these advantages are indeed obtained with the same accuracy available from batch KL algorithms.

423 citations

Journal ArticleDOI
TL;DR: A new method of farthest point strategy for progressive image acquisition-an acquisition process that enables an approximation of the whole image at each sampling stage-is presented, retaining its uniformity with the increased density, providing efficient means for sparse image sampling and display.
Abstract: A new method of farthest point strategy (FPS) for progressive image acquisition-an acquisition process that enables an approximation of the whole image at each sampling stage-is presented. Its main advantage is in retaining its uniformity with the increased density, providing efficient means for sparse image sampling and display. In contrast to previously presented stochastic approaches, the FPS guarantees the uniformity in a deterministic min-max sense. Within this uniformity criterion, the sampling points are irregularly spaced, exhibiting anti-aliasing properties comparable to those characteristic of the best available method (Poisson disk). A straightforward modification of the FPS yields an image-dependent adaptive sampling scheme. An efficient O(N log N) algorithm for both versions is introduced, and several applications of the FPS are discussed.

407 citations

Journal ArticleDOI
01 Oct 1999
TL;DR: This work investigates the ability of a group of robots, that communicate by leaving traces, to perform the task of cleaning the floor of an un-mapped building, or any task that requires the traversal of an unknown region.
Abstract: We investigate the ability of a group of robots, that communicate by leaving traces, to perform the task of cleaning the floor of an un-mapped building, or any task that requires the traversal of an unknown region. More specifically, we consider robots which leave chemical odour traces that evaporate with time, and are able to evaluate the strength of smell at every point they reach, with some measurement error. Our abstract model is a decentralized multi-agent adaptive system with a shared memory, moving on a graph whose vertices are the floor-tiles. We describe three methods of covering a graph in a distributed fashion, using smell traces that gradually vanish with time, and show that they all result in eventual task completion, two of them in a time polynomial in the number of tiles. Our algorithms can complete the traversal of the graph even if some of the agents die or the graph changes during the execution, as long as the graph stays connected. Another advantage of our agent interaction processes is the ability of agents to use noisy information at the cost of longer cover time.

301 citations

Journal ArticleDOI
TL;DR: Dennis Gabor examined the problem of image deblurring and was the first to suggest a method for edge enhancement based on principles widely accepted today and implemented in advanced image processing systems.

253 citations

Journal ArticleDOI
TL;DR: In this article, a look-ahead algorithm for selective sampling of examples for nearest neighbor classifiers is proposed, where the algorithm is looking for the example with the highest utility, taking its effect on the resulting classifier into account.
Abstract: Most existing inductive learning algorithms work under the assumption that their training examples are already tagged. There are domains, however, where the tagging procedure requires significant computation resources or manual labor. In such cases, it may be beneficial for the learner to be active, intelligently selecting the examples for labeling with the goal of reducing the labeling cost. In this paper we present LSS—a lookahead algorithm for selective sampling of examples for nearest neighbor classifiers. The algorithm is looking for the example with the highest utility, taking its effect on the resulting classifier into account. Computing the expected utility of an example requires estimating the probability of its possible labels. We propose to use the random field model for this estimation. The LSS algorithm was evaluated empirically on seven real and artificial data sets, and its performance was compared to other selective sampling algorithms. The experiments show that the proposed algorithm outperforms other methods in terms of average error rate and stability.

224 citations


Cited by
More filters
Book
01 Jan 2004
TL;DR: Ant colony optimization (ACO) is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals as discussed by the authors In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization.
Abstract: Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony Ant colony optimization exploits a similar mechanism for solving optimization problems From the early nineties, when the first ant colony optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO The goal of this article is to introduce ant colony optimization and to survey its most notable applications

6,861 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: A new measure, the method noise, is proposed, to evaluate and compare the performance of digital image denoising methods, and a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image is proposed.
Abstract: We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image. Finally, we present some experiments comparing the NL-means algorithm and the local smoothing filters.

6,804 citations

01 Jan 2009
TL;DR: This report provides a general introduction to active learning and a survey of the literature, including a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date.
Abstract: The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the data from which it learns. An active learner may pose queries, usually in the form of unlabeled data instances to be labeled by an oracle (e.g., a human annotator). Active learning is well-motivated in many modern machine learning problems, where unlabeled data may be abundant or easily obtained, but labels are difficult, time-consuming, or expensive to obtain. This report provides a general introduction to active learning and a survey of the literature. This includes a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date. An analysis of the empirical and theoretical evidence for successful active learning, a summary of problem setting variants and practical issues, and a discussion of related topics in machine learning research are also presented.

5,227 citations

01 Jan 2001
TL;DR: The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data by carrying out sequential optimization over pairs of input patterns and providing a theoretical analysis of the statistical performance of the algorithm.
Abstract: Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a simple subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

4,410 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a method to estimate a function f that is positive on S and negative on the complement of S. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space.
Abstract: Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

4,397 citations