scispace - formally typeset
Search or ask a question
Author

Michael Lynch

Bio: Michael Lynch is an academic researcher from Arizona State University. The author has contributed to research in topics: Population & Mutation rate. The author has an hindex of 112, co-authored 422 publications receiving 63461 citations. Previous affiliations of Michael Lynch include University of Toronto & University of Rochester.


Papers
More filters
Book
01 Jan 1996
TL;DR: This book discusses the genetic Basis of Quantitative Variation, Properties of Distributions, Covariance, Regression, and Correlation, and Properties of Single Loci, and Sources of Genetic Variation for Multilocus Traits.
Abstract: I. The Genetic Basis of Quantitative Variation - An Overview of Quantitative Genetics - Properties of Distributions - Covariance, Regression, and Correlation - Properties of Single Loci - Sources of Genetic Variation for Multilocus Traits - Sources of Environmental Variation - Resemblance Between Relatives - Introduction to Matrix Algebra and Linear Models - Analysis of Line Crosses - Inbreeding Depression - Matters of Scale - II. Quantitative-Trait Loci - Polygenes and Polygenic Mutation - Detecting Major Genes - Basic Concepts of Marker-Based Analysis - Mapping and Characterizing QTLs: Inbred-Line Crosses - Mapping and Characterizing QTLs: Outbred Populations - III. Estimation Procedures - Parent-Offspring Regression - Sib AnalysisTwins and Clones - Cross-Classified Designs - Correlations Between Characters - Genotype x Environment Interaction - Maternal Effects Sex Linkage and Sexual Dimorphism - Threshold Characters - Estimation of Breeding Values - Variance-Component Estimation with Complex Pedigrees - Appendices - Expectations, Variances and Covariances of Compound Variables - Path Analysis - Matrix Algebra and Linear Models - Maximum Likelihood Estimation and Likelihood-Ratio Tests - Estimation of Power of Statistical Tests -

6,530 citations

Journal ArticleDOI
10 Nov 2000-Science
TL;DR: Although duplicate genes may only rarely evolve new functions, the stochastic silencing of such genes may play a significant role in the passive origin of new species.
Abstract: Gene duplication has generally been viewed as a necessary source of material for the origin of evolutionary novelties, but it is unclear how often gene duplicates arise and how frequently they evolve new functions. Observations from the genomic databases for several eukaryotic species suggest that duplicate genes arise at a very high rate, on average 0.01 per gene per million years. Most duplicated genes experience a brief period of relaxed selection early in their history, with a moderate fraction of them evolving in an effectively neutral manner during this period. However, the vast majority of gene duplicates are silenced within a few million years, with the few survivors subsequently experiencing strong purifying selection. Although duplicate genes may only rarely evolve new functions, the stochastic silencing of such genes may play a significant role in the passive origin of new species.

4,264 citations

Journal ArticleDOI
01 Apr 1999-Genetics
TL;DR: Focusing on the regulatory complexity of eukaryotic genes, it is shown how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions.
Abstract: The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between entropic decay and chance acquisition of an advantageous regulatory mutation. Sidow (1996, p. 717) On one hand, it may fix an advantageous allele giving it a slightly different, and selectable, function from its original copy. This initial fixation provides substantial protection against future fixation of null mutations, allowing additional mutations to accumulate that refine functional differentiation. Alternatively, a duplicate locus can instead first fix a null allele, becoming a pseudogene. Walsh (1995, p. 426) Duplicated genes persist only if mutations create new and essential protein functions, an event that is predicted to occur rarely. Nadeau and Sankoff (1997, p. 1259) Thus overall, with complex metazoans, the major mechanism for retention of ancient gene duplicates would appear to have been the acquisition of novel expression sites for developmental genes, with its accompanying opportunity for new gene roles underlying the progressive extension of development itself. Cooke et al. (1997, p. 362)

3,153 citations

Journal ArticleDOI
TL;DR: Estimators for several population‐genetic parameters (gene and genotype frequencies, within‐ and between‐population heterozygosities, degree of inbreeding and population subdivision, and degree of individual relatedness) are presented along with expressions for their sampling variances.
Abstract: Recent advances in the application of the polymerase chain reaction make it possible to score individuals at a large number of loci The RAPD (random amplified polymorphic DNA) method is one such technique that has attracted widespread interest The analysis of population structure with RAPD data is hampered by the lack of complete genotypic information resulting from dominance, since this enhances the sampling variance associated with single loci as well as induces bias in parameter estimation We present estimators for several population-genetic parameters (gene and genotype frequencies, within- and between-population heterozygosities, degree of inbreeding and population subdivision, and degree of individual relatedness) along with expressions for their sampling variances Although completely unbiased estimators do not appear to be possible with RAPDs, several steps are suggested that will insure that the bias in parameter estimates is negligible To achieve the same degree of statistical power, on the order of 2 to 10 times more individuals need to be sampled per locus when dominant markers are relied upon, as compared to codominant (RFLP, isozyme) markers Moreover, to avoid bias in parameter estimation, the marker alleles for most of these loci should be in relatively low frequency Due to the need for pruning loci with low-frequency null alleles, more loci also need to be sampled with RAPDs than with more conventional markers, and some problems of bias cannot be completely eliminated

2,092 citations

Journal ArticleDOI
21 Nov 2003-Science
TL;DR: It is argued that many of these modifications emerged passively in response to the long-term population-size reductions that accompanied increases in organism size, and provided novel substrates for the secondary evolution of phenotypic complexity by natural selection.
Abstract: Complete genomic sequences from diverse phylogenetic lineages reveal notable increases in genome complexity from prokaryotes to multicellular eukaryotes. The changes include gradual increases in gene number, resulting from the retention of duplicate genes, and more abrupt increases in the abundance of spliceosomal introns and mobile genetic elements. We argue that many of these modifications emerged passively in response to the long-term population-size reductions that accompanied increases in organism size. According to this model, much of the restructuring of eukaryotic genomes was initiated by nonadaptive processes, and this in turn provided novel substrates for the secondary evolution of phenotypic complexity by natural selection. The enormous long-term effective population sizes of prokaryotes may impose a substantial barrier to the evolution of complex genomes and morphologies.

1,521 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Genalex is a user-friendly cross-platform package that runs within Microsoft Excel, enabling population genetic analyses of codominant, haploid and binary data.
Abstract: genalex is a user-friendly cross-platform package that runs within Microsoft Excel, enabling population genetic analyses of codominant, haploid and binary data. Allele frequency-based analyses include heterozygosity, F statistics, Nei's genetic distance, population assignment, probabilities of identity and pairwise relatedness. Distance-based calculations include amova, principal coordinates analysis (PCA), Mantel tests, multivariate and 2D spatial autocorrelation and twogener. More than 20 different graphs summarize data and aid exploration. Sequence and genotype data can be imported from automated sequencers, and exported to other software. Initially designed as tool for teaching, genalex 6 now offers features for researchers as well. Documentation and the program are available at http://www.anu.edu.au/BoZo/GenAlEx/

15,786 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
01 Jun 1992-Genetics
TL;DR: In this article, a framework for the study of molecular variation within a single species is presented, where information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes.
Abstract: We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as phi-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivision. The method is flexible enough to accommodate several alternative input matrices, corresponding to different types of molecular data, as well as different types of evolutionary assumptions, without modifying the basic structure of the analysis. The significance of the variance components and phi-statistics is tested using a permutational approach, eliminating the normality assumption that is conventional for analysis of variance but inappropriate for molecular data. Application of AMOVA to human mitochondrial DNA haplotype data shows that population subdivisions are better resolved when some measure of molecular differences among haplotypes is introduced into the analysis. At the intraspecific level, however, the additional information provided by knowing the exact phylogenetic relations among haplotypes or by a nonlinear translation of restriction-site change into nucleotide diversity does not significantly modify the inferred population genetic structure. Monte Carlo studies show that site sampling does not fundamentally affect the significance of the molecular variance components. The AMOVA treatment is easily extended in several different directions and it constitutes a coherent and flexible framework for the statistical analysis of molecular data.

12,835 citations