scispace - formally typeset
Search or ask a question
Author

Michael McClelland

Bio: Michael McClelland is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Salmonella enterica & Salmonella. The author has an hindex of 79, co-authored 372 publications receiving 27627 citations. Previous affiliations of Michael McClelland include University of Illinois at Chicago & University of Georgia.


Papers
More filters
Journal ArticleDOI
TL;DR: The generality of the arbitrarily primed PCR method is demonstrated by application to twenty four strains from five species of Staphylococcus, eleven strains of Streptococcus pyogenes and three varieties of Oryza sativa.
Abstract: Simple and reproducible fingerprints of complex genomes can be generated using single arbitrarily chosen primers and the polymerase chain reaction (PCR). No prior sequence information is required. The method, arbitrarily primed PCR (AP-PCR), involves two cycles of low stringency amplification followed by PCR at higher stringency. We show that strains can be distinguished by comparing polymorphisms in genomic fingerprints. The generality of the method is demonstrated by application to twenty four strains from five species of Staphylococcus, eleven strains of Streptococcus pyogenes and three varieties of Oryza sativa (rice).

5,472 citations

Journal ArticleDOI
25 Oct 2001-Nature
TL;DR: The distribution of close homologues of S. typhimurium LT2 genes in eight related enterobacteria was determined using previously completed genomes of three related bacteria, sample sequencing of both S. enterica serovar Paratyphi A and Klebsiella pneumoniae as mentioned in this paper.
Abstract: Salmonella enterica subspecies I, serovar Typhimurium (S. typhimurium), is a leading cause of human gastroenteritis, and is used as a mouse model of human typhoid fever. The incidence of non-typhoid salmonellosis is increasing worldwide, causing millions of infections and many deaths in the human population each year. Here we sequenced the 4,857-kilobase (kb) chromosome and 94-kb virulence plasmid of S. typhimurium strain LT2. The distribution of close homologues of S. typhimurium LT2 genes in eight related enterobacteria was determined using previously completed genomes of three related bacteria, sample sequencing of both S. enterica serovar Paratyphi A (S. paratyphi A) and Klebsiella pneumoniae, and hybridization of three unsequenced genomes to a microarray of S. typhimurium LT2 genes. Lateral transfer of genes is frequent, with 11% of the S. typhimurium LT2 genes missing from S. enterica serovar Typhi (S. typhi), and 29% missing from Escherichia coli K12. The 352 gene homologues of S. typhimurium LT2 confined to subspecies I of S. enterica-containing most mammalian and bird pathogens-are useful for studies of epidemiology, host specificity and pathogenesis. Most of these homologues were previously unknown, and 50 may be exported to the periplasm or outer membrane, rendering them accessible as therapeutic or vaccine targets.

1,850 citations

Journal ArticleDOI
14 Jul 2006-Science
TL;DR: H-NS provides a previously unrecognized mechanism of bacterial defense against foreign DNA, enabling the acquisition of DNA from exogenous sources while avoiding detrimental consequences from unregulated expression of newly acquired genes.
Abstract: Horizontal gene transfer plays a major role in microbial evolution. However, newly acquired sequences can decrease fitness unless integrated into preexisting regulatory networks. We found that the histone-like nucleoid structuring protein (H-NS) selectively silences horizontally acquired genes by targeting sequences with GC content lower than the resident genome. Mutations in hns are lethal in Salmonella unless accompanied by compensatory mutations in other regulatory loci. Thus, H-NS provides a previously unrecognized mechanism of bacterial defense against foreign DNA, enabling the acquisition of DNA from exogenous sources while avoiding detrimental consequences from unregulated expression of newly acquired genes. Characteristic GC/AT ratios of bacterial genomes may facilitate discrimination between a cell's own DNA and foreign DNA.

724 citations

Journal ArticleDOI
TL;DR: Fingerprinting of RNA populations was achieved using an arbitrarily selected primer at low stringency for first and second strand cDNA synthesis and PCR amplification was then used to amplify the products.
Abstract: Fingerprinting of RNA populations was achieved using an arbitrarily selected primer at low stringency for first and second strand cDNA synthesis. PCR amplification was then used to amplify the products. The method required only a few nanograms of total RNA and was unaffected by low levels of genomic double stranded DNA contamination. A reproducible pattern of ten to twenty clearly visible PCR products was obtained from any one tissue. Differences in PCR fingerprints were detected for RNAs from the same tissue isolated from different mouse strains and for RNAs from different tissues from the same mouse. The strain-specific differences revealed are probably due to sequence polymorphisms and should be useful for genetic mapping of genes. The tissue-specific differences revealed may be useful for studying differential gene expression. Examples of tissue-specific differences were cloned. Differential expression was confirmed for these products by Northern analysis and DNA sequencing uncovered two new tissue-specific messages. The method should be applicable to the detection of differences between RNA populations in a wide variety of situations.

636 citations

Journal ArticleDOI
TL;DR: A table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes.
Abstract: Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes.

466 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

Journal ArticleDOI
TL;DR: The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity that allows the specific co-amplification of high numbers of restriction fragments.
Abstract: A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity.

12,960 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
05 Sep 1997-Science
TL;DR: The 4,639,221-base pair sequence of Escherichia coli K-12 is presented and reveals ubiquitous as well as narrowly distributed gene families; many families of similar genes within E. coli are also evident.
Abstract: The 4,639,221-base pair sequence of Escherichia coli K-12 is presented. Of 4288 protein-coding genes annotated, 38 percent have no attributed function. Comparison with five other sequenced microbes reveals ubiquitous as well as narrowly distributed gene families; many families of similar genes within E. coli are also evident. The largest family of paralogous proteins contains 80 ABC transporters. The genome as a whole is strikingly organized with respect to the local direction of replication; guanines, oligonucleotides possibly related to replication and recombination, and most genes are so oriented. The genome also contains insertion sequence (IS) elements, phage remnants, and many other patches of unusual composition indicating genome plasticity through horizontal transfer.

7,723 citations

Book ChapterDOI
01 Jan 2005
TL;DR: This chapter starts with the simplest replicated designs and progresses through experiments with two or more groups, direct designs, factorial designs and time course experiments with technical as well as biological replication.
Abstract: A survey is given of differential expression analyses using the linear modeling features of the limma package. The chapter starts with the simplest replicated designs and progresses through experiments with two or more groups, direct designs, factorial designs and time course experiments. Experiments with technical as well as biological replication are considered. Empirical Bayes test statistics are explained. The use of quality weights, adaptive background correction and control spots in conjunction with linear modelling is illustrated on the β7 data.

5,920 citations