scispace - formally typeset
Search or ask a question
Author

Michael Menaker

Bio: Michael Menaker is an academic researcher from University of Virginia. The author has contributed to research in topics: Circadian rhythm & Light effects on circadian rhythm. The author has an hindex of 77, co-authored 206 publications receiving 25480 citations. Previous affiliations of Michael Menaker include University of Oregon & Mitsubishi Tanabe Pharma.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that peripheral tissues express self-sustained, rather than damped, circadian oscillations and the existence of organ-specific synchronizers of circadian rhythms at the cell and tissue level is suggested.
Abstract: Mammalian circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), and current dogma holds that the SCN is required for the expression of circadian rhythms in peripheral tissues. Using a PERIOD2::LUCIFERASE fusion protein as a real-time reporter of circadian dynamics in mice, we report that, contrary to previous work, peripheral tissues are capable of self-sustained circadian oscillations for >20 cycles in isolation. In addition, peripheral organs expressed tissue-specific differences in circadian period and phase. Surprisingly, lesions of the SCN in mPer2Luciferase knockin mice did not abolish circadian rhythms in peripheral tissues, but instead caused phase desynchrony among the tissues of individual animals and from animal to animal. These results demonstrate that peripheral tissues express self-sustained, rather than damped, circadian oscillations and suggest the existence of organ-specific synchronizers of circadian rhythms at the cell and tissue level.

2,010 citations

Journal ArticleDOI
28 Apr 2000-Science
TL;DR: It is hypothesize that a self-sustained circadian pacemaker in the SCN entrains circadian oscillators in the periphery to maintain adaptive phase control, which is temporarily lost following large, abrupt shifts in the environmental light cycle.
Abstract: In multicellular organisms, circadian oscillators are organized into multitissue systems which function as biological clocks that regulate the activities of the organism in relation to environmental cycles and provide an internal temporal framework. To investigate the organization of a mammalian circadian system, we constructed a transgenic rat line in which luciferase is rhythmically expressed under the control of the mouse Per1 promoter. Light emission from cultured suprachiasmatic nuclei (SCN) of these rats was invariably and robustly rhythmic and persisted for up to 32 days in vitro. Liver, lung, and skeletal muscle also expressed circadian rhythms, which damped after two to seven cycles in vitro. In response to advances and delays of the environmental light cycle, the circadian rhythm of light emission from the SCN shifted more rapidly than did the rhythm of locomotor behavior or the rhythms in peripheral tissues. We hypothesize that a self-sustained circadian pacemaker in the SCN entrains circadian oscillators in the periphery to maintain adaptive phase control, which is temporarily lost following large, abrupt shifts in the environmental light cycle.

1,800 citations

Journal ArticleDOI
23 Feb 1990-Science
TL;DR: The pacemaker role of the suprachiasmatic nucleus in a mammalian circadian system was tested by neural transplantation by using a mutant strain of hamster that shows a short circadian period to restore circadian rhythms to arrhythmic animals whose own nucleus had been ablated.
Abstract: The pacemaker role of the suprachiasmatic nucleus in a mammalian circadian system was tested by neural transplantation by using a mutant strain of hamster that shows a short circadian period. Small neural grafts from the suprachiasmatic region restored circadian rhythms to arrhythmic animals whose own nucleus had been ablated. The restored rhythms always exhibited the period of the donor genotype regardless of the direction of the transplant or genotype of the host. The basic period of the overt circadian rhythm therefore is determined by cells of the suprachiasmatic region.

1,772 citations

Journal ArticleDOI
19 Jan 2001-Science
TL;DR: It is demonstrated that feeding cycles can entrain the liver independently of the SCN and the light cycle, and the need to reexamine the mammalian circadian hierarchy is suggested, raising the possibility that peripheral circadian oscillators like those in the liver may be coupled to theSCN primarily through rhythmic behavior, such as feeding.
Abstract: Circadian rhythms of behavior are driven by oscillators in the brain that are coupled to the environmental light cycle. Circadian rhythms of gene expression occur widely in peripheral organs. It is unclear how these multiple rhythms are coupled together to form a coherent system. To study such coupling, we investigated the effects of cycles of food availability (which exert powerful entraining effects on behavior) on the rhythms of gene expression in the liver, lung, and suprachiasmatic nucleus (SCN). We used a transgenic rat model whose tissues express luciferase in vitro. Although rhythmicity in the SCN remained phase-locked to the light-dark cycle, restricted feeding rapidly entrained the liver, shifting its rhythm by 10 hours within 2 days. Our results demonstrate that feeding cycles can entrain the liver independently of the SCN and the light cycle, and they suggest the need to reexamine the mammalian circadian hierarchy. They also raise the possibility that peripheral circadian oscillators like those in the liver may be coupled to the SCN primarily through rhythmic behavior, such as feeding.

1,640 citations

Journal ArticleDOI
21 Apr 2000-Science
TL;DR: The tau mutation is a semidominant autosomal allele that dramatically shortens period length of circadian rhythms in Syrian hamsters and the mechanism by which the mutation leads to the observed aberrant circadian phenotype in mutant animals is proposed.
Abstract: The tau mutation is a semidominant autosomal allele that dramatically shortens period length of circadian rhythms in Syrian hamsters. We report the molecular identification of the tau locus using genetically directed representational difference analysis to define a region of conserved synteny in hamsters with both the mouse and human genomes. The tau locus is encoded by casein kinase I epsilon (CKIɛ), a homolog of the Drosophila circadian gene double-time . In vitro expression and functional studies of wild-type and tau mutant CKIɛ enzyme reveal that the mutant enzyme has a markedly reduced maximal velocity and autophosphorylation state. In addition, in vitro CKIɛ can interact with mammalian PERIOD proteins, and the mutant enzyme is deficient in its ability to phosphorylate PERIOD. We conclude that tau is an allele of hamster CKIɛ and propose a mechanism by which the mutation leads to the observed aberrant circadian phenotype in mutant animals.

840 citations


Cited by
More filters
Journal ArticleDOI
29 Aug 2002-Nature
TL;DR: Circadian rhythms are generated by one of the most ubiquitous and well-studied timing systems and are tamed by a master clock in the brain, which coordinates tissue-specific rhythms according to light input it receives from the outside world.
Abstract: Time in the biological sense is measured by cycles that range from milliseconds to years. Circadian rhythms, which measure time on a scale of 24 h, are generated by one of the most ubiquitous and well-studied timing systems. At the core of this timing mechanism is an intricate molecular mechanism that ticks away in many different tissues throughout the body. However, these independent rhythms are tamed by a master clock in the brain, which coordinates tissue-specific rhythms according to light input it receives from the outside world.

3,962 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Journal ArticleDOI
08 Feb 2002-Science
TL;DR: It is shown that retinal ganglion cells innervating the SCN are intrinsically photosensitive, and depolarized in response to light even when all synaptic input from rods and cones was blocked.
Abstract: Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.

3,052 citations

Journal ArticleDOI
Jay C. Dunlap1
22 Jan 1999-Cell
TL;DR: It used to be that research in chronobiology moved biochemical functions [transcriptional activators], the along at a gentlemanly pace, but by mid 1997 the word in determining what the authors perceive as time was PASWCCLK.

2,723 citations

Journal ArticleDOI
TL;DR: The current state of knowledge regarding the molecular mechanisms of PPAR action and the involvement of the PPARs in the etiology and treatment of several chronic diseases is presented.
Abstract: ▪ Abstract The peroxisome proliferator-activated receptors (PPARs) are a group of three nuclear receptor isoforms, PPARγ, PPARα, and PPARδ, encoded by different genes. PPARs are ligand-regulated transcription factors that control gene expression by binding to specific response elements (PPREs) within promoters. PPARs bind as heterodimers with a retinoid X receptor and, upon binding agonist, interact with cofactors such that the rate of transcription initiation is increased. The PPARs play a critical physiological role as lipid sensors and regulators of lipid metabolism. Fatty acids and eicosanoids have been identified as natural ligands for the PPARs. More potent synthetic PPAR ligands, including the fibrates and thiazolidinediones, have proven effective in the treatment of dyslipidemia and diabetes. Use of such ligands has allowed researchers to unveil many potential roles for the PPARs in pathological states including atherosclerosis, inflammation, cancer, infertility, and demyelination. Here, we presen...

2,421 citations