scispace - formally typeset
Search or ask a question
Author

Michael Montero

Other affiliations: University of California
Bio: Michael Montero is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Promotion (rank) & Fused deposition modeling. The author has an hindex of 4, co-authored 14 publications receiving 1715 citations. Previous affiliations of Michael Montero include University of California.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of FDM parts fabricated by the FDM 1650 were analyzed using a Design of Experiment (DOE) approach, such as raster orientation, air gap, bead width, color and model temperature.
Abstract: Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of ABS plastic. To predict the mechanical behavior of FDM parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on anisotropic material properties. This paper characterizes the properties of ABS parts fabricated by the FDM 1650. Using a Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths and compressive strengths of directionally fabricated specimens were measured and compared with injection molded FDM ABS P400 material. For the FDM parts made with a 0.003 inch overlap between roads, the typical tensile strength ranged between 65 and 72 percent of the strength of injection molded ABS P400. The compressive strength ranged from 80 to 90 percent of the injection molded FDM ABS. Several build rules for designing FDM parts were formulated based on experimental results.

1,886 citations

01 Jan 2001
TL;DR: In this article, the properties of ABS parts fabricated by the FDM 1650 were examined using the Design of Experiment (DOE) approach, and several build rules for designing FDM parts were obtained.
Abstract: Rapid Prototyping (RP) technology has been advanced to fabricate initial prototypes from various materials. Stratasys’ Fused Deposition Modeling (FDM) is one of the typical RP processes that provide functional prototypes of ABS plastic. In order to predict the behavior of final ABS parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on composite material properties. In this paper, we seek t the properties of ABS parts fabricated by the FDM 1650. Using the Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths of crisscross specimens, [45 °/-45°], cross specimens, [0 °/90°], and directionally fabricated tensile specimens ([0°] and [90 °]) were measured and compared with the injection molded FDMABS P400 material. For the FDM parts made with a –0.003” air gap, the typical tensile strength ranged between 65 percent and 72 percent of the strength of injection molded ABS P400. From the experiment s, several build rules for designing FDM parts were obtained.

145 citations

Patent
31 Mar 2014
TL;DR: In this article, test promotions are formulated using highly granular test variables on purposefully segmented sub-populations and responses from individuals in the sub-population are received and analyzed.
Abstract: Methods and apparatus for implementing forward looking optimizing promotions by administering, in large numbers and iteratively, test promotions formulated using highly granular test variables on purposefully segmented subpopulations. The plurality of test promotions are associated with at least one behavioral economics principles. The responses from individuals in the subpopulations are received and analyzed. The analysis result is employed to subsequently formulate a general public promotion.

7 citations

Proceedings ArticleDOI
01 Jan 2003
TL;DR: In this article, the authors present a design methodology for the thermal design and packaging of hybrid electronic-mechanical products using a web-based Design of Experiment Testbed (DOET) to systematically determine effects of varying system parameters.
Abstract: This paper presents a design methodology for the thermal design and packaging of hybrid electronic-mechanical products. In this work, tight integration between ECAD and MCAD was achieved through the use of a web-based tool used in managing the concurrent designs, called the Domain Unified CAD Environment (DUCADE). This work also reduced the amount of time required for thermal simulation by using a web-based Design of Experiment Testbed (DOET) to systematically determine effects of varying system parameters before full-scale computational fluid dynamics (CFD) thermal modeling was performed. The design process began by proper selection of material, manufacturing process and cooling methods, based on electrical and integrated circuit design. DUCADE was then set up to monitor couplings between the various domains. This was followed by computer-aided-design and computer-aided-engineering of the mechanical package. In computer-aided-engineering, DOET was first used to determine variables that had significant effect on the thermal system response. Detailed CFD thermal simulations were then carried out in FLOTHERM only focusing on variables that the DOET determined to have strong effect. Rapid prototypes were fabricated to refine the design before final production. Each step of the cycle was tested and demonstrated through a case study on the design of the Berkeley Emulation Engine (BEE) which involved multi-disciplinary electrical, mechanical, and thermal design.© 2003 ASME

5 citations

Patent
31 Mar 2014
TL;DR: In this article, test promotions automatically formulated using highly granular test variables on subpopulations are received and analyzed, and the analysis result is employed to subsequently formulate a general public promotion.
Abstract: Methods and apparatus for implementing forward looking optimizing promotions by administering, in large numbers and iteratively, test promotions automatically formulated using highly granular test variables on subpopulations. The responses from individuals in the subpopulations are received and analyzed. The analysis result is employed to subsequently formulate a general public promotion.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Polymers are by far the most utilized class of materials for AM and their design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed.
Abstract: Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting....

2,136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering.
Abstract: The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs. Due to the intrinsically limited mechanical properties and functionalities of printed pure polymer parts, there is a critical need to develop printable polymer composites with high performance. 3D printing offers many advantages in the fabrication of composites, including high precision, cost effective and customized geometry. This article gives an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering. Common 3D printing techniques such as fused deposition modeling, selective laser sintering, inkjet 3D printing, stereolithography, and 3D plotting are introduced. The formation methodology and the performance of particle-, fiber- and nanomaterial-reinforced polymer composites are emphasized. Finally, important limitations are identified to motivate the future research of 3D printing.

2,132 citations

Journal ArticleDOI
TL;DR: Future directions such as the "print-it-all" paradigm, that have the potential to re-imagine current research and spawn completely new avenues for exploration are pointed out.
Abstract: Additive manufacturing (AM) is poised to bring about a revolution in the way products are designed, manufactured, and distributed to end users. This technology has gained significant academic as well as industry interest due to its ability to create complex geometries with customizable material properties. AM has also inspired the development of the maker movement by democratizing design and manufacturing. Due to the rapid proliferation of a wide variety of technologies associated with AM, there is a lack of a comprehensive set of design principles, manufacturing guidelines, and standardization of best practices. These challenges are compounded by the fact that advancements in multiple technologies (for example materials processing, topology optimization) generate a "positive feedback loop" effect in advancing AM. In order to advance research interest and investment in AM technologies, some fundamental questions and trends about the dependencies existing in these avenues need highlighting. The goal of our review paper is to organize this body of knowledge surrounding AM, and present current barriers, findings, and future trends significantly to the researchers. We also discuss fundamental attributes of AM processes, evolution of the AM industry, and the affordances enabled by the emergence of AM in a variety of areas such as geometry processing, material design, and education. We conclude our paper by pointing out future directions such as the "print-it-all" paradigm, that have the potential to re-imagine current research and spawn completely new avenues for exploration. The fundamental attributes and challenges/barriers of Additive Manufacturing (AM).The evolution of research on AM with a focus on engineering capabilities.The affordances enabled by AM such as geometry, material and tools design.The developments in industry, intellectual property, and education-related aspects.The important future trends of AM technologies.

1,792 citations

Journal ArticleDOI
TL;DR: Additive manufacturing (AM) technology has been researched and developed for more than 20 years as mentioned in this paper, and significant progress has been made in the development and commercialization of new and innovative AM processes, as well as numerous practical applications in aerospace, automotive, biomedical, energy and other fields.
Abstract: Additive manufacturing (AM) technology has been researched and developed for more than 20 years. Rather than removing materials, AM processes make three-dimensional parts directly from CAD models by adding materials layer by layer, offering the beneficial ability to build parts with geometric and material complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past two decades, significant progress has been made in the development and commercialization of new and innovative AM processes, as well as numerous practical applications in aerospace, automotive, biomedical, energy and other fields. This paper reviews the main processes, materials and applications of the current AM technology and presents future research needs for this technology.

1,502 citations

Journal ArticleDOI
TL;DR: A review on the latest advances in the 3D printing of ceramics and present the historical origins and evolution of each related technique is presented in this paper. And the main technical aspects, including feedstock properties, process control, post-treatments and energy source-material interactions, are also discussed.
Abstract: Along with extensive research on the three-dimensional (3D) printing of polymers and metals, 3D printing of ceramics is now the latest trend to come under the spotlight. The ability to fabricate ceramic components of arbitrarily complex shapes has been extremely challenging without 3D printing. This review focuses on the latest advances in the 3D printing of ceramics and presents the historical origins and evolution of each related technique. The main technical aspects, including feedstock properties, process control, post-treatments and energy source–material interactions, are also discussed. The technical challenges and advice about how to address these are presented. Comparisons are made between the techniques to facilitate the selection of the best ones in practical use. In addition, representative applications of the 3D printing of various types of ceramics are surveyed. Future directions are pointed out on the advancement on materials and forming mechanism for the fabrication of high-performance ceramic components.

1,082 citations