scispace - formally typeset
Search or ask a question
Author

Michael N. Gooseff

Bio: Michael N. Gooseff is an academic researcher from University of Colorado Boulder. The author has contributed to research in topics: Hyporheic zone & Soil water. The author has an hindex of 50, co-authored 162 publications receiving 7636 citations. Previous affiliations of Michael N. Gooseff include Colorado State University & Colorado School of Mines.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana.
Abstract: [1] The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first-order control on the distribution of soil water and groundwater. Hillslope-riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope-riparian-stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape-scale connectivity through time and ascertain its relationship to catchment-scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first-order control on runoff source area and whole catchment response characteristics.

539 citations

Journal ArticleDOI
TL;DR: Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes.
Abstract: Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.

285 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose river corridor science as a concept that integrates downstream transport with lateral and vertical exchange across interfaces, and include the main channel exchange with recirculating marginal waters, hyporheic exchange, bank storage, and overbank flow onto floodplains under a broad continuum of interactions known as hydrologic exchange flows.
Abstract: Previously regarded as the passive drains of watersheds, over the past 50 years, rivers have progressively been recognized as being actively connected with off-channel environments. These connections prolong physical storage and enhance reactive processing to alter water chemistry and downstream transport of materials and energy. Here we propose river corridor science as a concept that integrates downstream transport with lateral and vertical exchange across interfaces. Thus, the river corridor, rather than the wetted river channel itself, is an increasingly common unit of study. Main channel exchange with recirculating marginal waters, hyporheic exchange, bank storage, and overbank flow onto floodplains are all included under a broad continuum of interactions known as “hydrologic exchange flows.” Hydrologists, geomorphologists, geochemists, and aquatic and terrestrial ecologists are cooperating in studies that reveal the dynamic interactions among hydrologic exchange flows and consequences for water quality improvement, modulation of river metabolism, habitat provision for vegetation, fish, and wildlife, and other valued ecosystem services. The need for better integration of science and management is keenly felt, from testing effectiveness of stream restoration and riparian buffers all the way to reevaluating the definition of the waters of the United States to clarify the regulatory authority under the Clean Water Act. A major challenge for scientists is linking the small-scale physical drivers with their larger-scale fluvial and geomorphic context and ecological consequences. Although the fine scales of field and laboratory studies are best suited to identifying the fundamental physical and biological processes, that understanding must be successfully linked to cumulative effects at watershed to regional and continental scales.

272 citations

Journal ArticleDOI
TL;DR: In this paper, the specific UV absorbance (SUVA, 254 nm) of DOC in three watersheds increased by 9 to 36% during the storm, suggesting that DOC mobilized from catchment soils during storms is more aromatic than DOC entering the stream during baseflow.
Abstract: watershed. The specific UV absorbance (SUVA, 254 nm) of DOC in the three watersheds increased by 9 to 36% during the storm, suggesting that DOC mobilized from catchment soils during storms is more aromatic than DOC entering the stream during baseflow. The increase in SUVA was most pronounced in the previously harvested catchments. Chromatographic fractionation of DOC showed that the percentage of DOC composed of non-humic material decreasing by 9 to 22% during the storm. Shifts in the fluorescence properties of DOC suggest that there was not a pronounced change in the relative proportion of stream water DOC derived from allochthonous versus autochthonous precursor material. Taken together, these results suggest that spectroscopic and chemical characterization of DOC can be used as tools to investigate changing sources of DOC and water within forested watersheds.

253 citations

Journal ArticleDOI
TL;DR: Stream restoration needs to consider the hyporheic zone just as much as the surface and benthic regions when planning for the future ofStream restoration.
Abstract: Stream restoration needs to consider the hyporheic zone just as much as the surface and benthic regions.

241 citations


Cited by
More filters
Journal Article
TL;DR: This study reviews several of the most commonly used inductive teaching methods, including inquiry learning, problem-based learning, project-basedLearning, case-based teaching, discovery learning, and just-in-time teaching, and defines each method, highlights commonalities and specific differences, and reviews research on the effectiveness.
Abstract: Traditional engineering instruction is deductive, beginning with theories and progressing to the applications of those theories Alternative teaching approaches are more inductive Topics are introduced by presenting specific observations, case studies or problems, and theories are taught or the students are helped to discover them only after the need to know them has been established This study reviews several of the most commonly used inductive teaching methods, including inquiry learning, problem-based learning, project-based learning, case-based teaching, discovery learning, and just-in-time teaching The paper defines each method, highlights commonalities and specific differences, and reviews research on the effectiveness of the methods While the strength of the evidence varies from one method to another, inductive methods are consistently found to be at least equal to, and in general more effective than, traditional deductive methods for achieving a broad range of learning outcomes

1,673 citations

07 Jan 2013
TL;DR: In this article, the authors analyzed daily fields of 500-hPa heights from the National Centers for Environmental Prediction Reanalysis over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with Arctic amplification and the relaxation of poleward thickness gradients.
Abstract: [1] Arctic amplification (AA) – the observed enhanced warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves.

1,048 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of SA and its link to uncertainty analysis, model calibration and evaluation, robust decision-making, and provides practical guidelines by developing a workflow for the application of SA.
Abstract: Sensitivity Analysis (SA) investigates how the variation in the output of a numerical model can be attributed to variations of its input factors. SA is increasingly being used in environmental modelling for a variety of purposes, including uncertainty assessment, model calibration and diagnostic evaluation, dominant control analysis and robust decision-making. In this paper we review the SA literature with the goal of providing: (i) a comprehensive view of SA approaches also in relation to other methodologies for model identification and application; (ii) a systematic classification of the most commonly used SA methods; (iii) practical guidelines for the application of SA. The paper aims at delivering an introduction to SA for non-specialist readers, as well as practical advice with best practice examples from the literature; and at stimulating the discussion within the community of SA developers and users regarding the setting of good practices and on defining priorities for future research. We present an overview of SA and its link to uncertainty analysis, model calibration and evaluation, robust decision-making.We provide a systematic review of existing approaches, which can support users in the choice of an SA method.We provide practical guidelines by developing a workflow for the application of SA and discuss critical choices.We give best practice examples from the literature and highlight trends and gaps for future research.

888 citations

Journal ArticleDOI
TL;DR: The Prediction in Ungauged Basins (PUB) initiative of the International Association of Hydrological Sciences (IAHS) launched in 2003 and concluded by the PUB Symposium 2012 held in Delft (23-25 October 2012), set out to shift the scientific culture of hydrology towards improved scientific understanding of hydrological processes, as well as associated uncertainties and the development of models with increasing realism and predictive power as discussed by the authors.
Abstract: The Prediction in Ungauged Basins (PUB) initiative of the International Association of Hydrological Sciences (IAHS), launched in 2003 and concluded by the PUB Symposium 2012 held in Delft (23–25 October 2012), set out to shift the scientific culture of hydrology towards improved scientific understanding of hydrological processes, as well as associated uncertainties and the development of models with increasing realism and predictive power. This paper reviews the work that has been done under the six science themes of the PUB Decade and outlines the challenges ahead for the hydrological sciences community.Editor D. KoutsoyiannisCitation Hrachowitz, M., Savenije, H.H.G., Bloschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W., Arheimer, B., Blume, T., Clark, M.P., Ehret, U., Fenicia, F., Freer, J.E., Gelfan, A., Gupta, H.V., Hughes, D.A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A., Uhlenbrook, S., Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E., and Cudennec, C., 2013. A d...

848 citations