scispace - formally typeset
Search or ask a question
Author

Michael O. Woodburne

Bio: Michael O. Woodburne is an academic researcher from Museum of Northern Arizona. The author has contributed to research in topics: Paleogene & Metatheria. The author has an hindex of 21, co-authored 34 publications receiving 2106 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The biotic and geologic dynamics of the Great American Biotic Interchange are reviewed and revised and trans-isthmian land mammal exchanges during the Pleistocene glacial intervals appear to have been promoted by the development of diverse non-tropical ecologies.
Abstract: The biotic and geologic dynamics of the Great American Biotic Interchange are reviewed and revised Information on the Marine Isotope Stage chronology, sea level changes as well as Pliocene and Pleistocene vegetation changes in Central and northern South America add to a discussion of the role of climate in facilitating trans-isthmian exchanges Trans-isthmian land mammal exchanges during the Pleistocene glacial intervals appear to have been promoted by the development of diverse non-tropical ecologies

380 citations

Journal ArticleDOI
TL;DR: In addition to being composed of essentially different groups of mammals, those of the South American continent seem to have responded to the climatic changes associated with the ECCO and subsequent conditions in a pattern that was initially comparable to, but subsequently different from, their North American counterparts.
Abstract: An appraisal of Paleogene floral and land mammal faunal dynamics in South America suggests that both biotic elements responded at rate and extent generally comparable to that portrayed by the global climate pattern of the interval. A major difference in the South American record is the initial as well as subsequent much greater diversity of both Neotropical and Austral floras relative to North American counterparts. Conversely, the concurrent mammal faunas in South America did not match, much less exceed, the diversity seen to the north. It appears unlikely that this difference is solely due to the virtual absence of immigrants subsequent to the initial dispersal of mammals to South America, and cannot be explained solely by the different collecting histories of the two regions. Possible roles played by non-mammalian vertebrates in niche exploitation remain to be explored.

154 citations

Journal ArticleDOI
TL;DR: The role of the mammalian faunas in age inference is discussed in this article, where the authors show that the presence of non-therian mammals in the Peligran is of little consequence to the bio- chronological evaluation, reflecting instead a relict Mesozoic distribution.
Abstract: The oldest Cenozoic mammalian assemblages in South America have been recovered from levels of the Han- sen Member of the Salamanca Formation, Punta Peligro locality in Argentina, and from the Santa Lucia Formation in Tiupampa, Bolivia. These faunas led to the recognition of the Peligran and Tiupampan South American Land Mammal Ages (SALMAs), each alternatively regarded as the oldest Paleocene SALMA. Due to the lack of radioisotopic dates for mammals bearing levels at these localities, no agreement has been reached yet about their relative ages. In this paper, the role of mammal faunas in age inference is discussed. Analysis of the SALMAs shows that the presence of non-therian mammals in the Peligran is of little consequence to the bio- chronological evaluation, reflecting instead a relict Mesozoic distribution. In contrast, therian mammals are particularly important in that (1) they were Lauraisan immigrants and (2) they support direct comparisons between the Tiupampa and Punta Peligro faunas. Parsimony and cluster analysis were used to quantitatively test hypotheses concerning the relative age of the Peligran and Tiupampan SALMAs. Our results support the hypothesis that the Tiupampan SALMA (early Danian) is older than the Peligran SALMA (early Selandian). This alignment results in an interpretation of the evolutionary history of South American land mammals that is more straightforward than the alternative.

140 citations


Cited by
More filters
Journal ArticleDOI
08 Feb 2013-Science
TL;DR: A phylogenetic tree shows that crown clade Placentalia and placental orders originated after the K-Pg boundary, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats).
Abstract: To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.

1,003 citations

Journal ArticleDOI
TL;DR: This work provides "hard" minimum and "soft" maximum age constraints for 30 divergences among key genome model organisms; these should contribute to better understanding of the dating of the animal tree of life.
Abstract: The role of fossils in dating the tree of life has been misunderstood. Fossils can provide good "minimum" age estimates for branches in the tree, but "maximum" constraints on those ages are poorer. Current debates about which are the "best" fossil dates for calibration move to consideration of the most appropriate constraints on the ages of tree nodes. Because fossil-based dates are constraints, and because molecular evolution is not perfectly clock-like, analysts should use more rather than fewer dates, but there has to be a balance between many genes and few dates versus many dates and few genes. We provide "hard" minimum and "soft" maximum age constraints for 30 divergences among key genome model organisms; these should contribute to better understanding of the dating of the animal tree of life.

903 citations

Journal ArticleDOI
Wesley C. Warren1, LaDeana W. Hillier1, Jennifer A. Marshall Graves2, Ewan Birney, Chris P. Ponting3, Frank Grützner4, Katherine Belov5, Webb Miller6, Laura Clarke7, Asif T. Chinwalla1, Shiaw Pyng Yang1, Andreas Heger3, Devin P. Locke1, Pat Miethke2, Paul D. Waters2, Frédéric Veyrunes8, Frédéric Veyrunes2, Lucinda Fulton1, Bob Fulton1, Tina Graves1, John W. Wallis1, Xose S. Puente9, Carlos López-Otín9, Gonzalo R. Ordóñez9, Evan E. Eichler10, Lin Chen10, Ze Cheng10, Janine E. Deakin2, Amber E. Alsop2, Katherine Thompson2, Patrick J. Kirby2, Anthony T. Papenfuss11, Matthew Wakefield11, Tsviya Olender12, Doron Lancet12, Gavin A. Huttley2, Arian F.A. Smit13, Andrew J Pask14, Peter Temple-Smith15, Peter Temple-Smith14, Mark A. Batzer16, Jerilyn A. Walker16, Miriam K. Konkel16, Robert S. Harris6, Camilla M. Whittington5, Emily S. W. Wong5, Neil J. Gemmell17, Emmanuel Buschiazzo17, Iris M. Vargas Jentzsch17, Angelika Merkel17, Juergen Schmitz18, Anja Zemann18, Gennady Churakov18, Jan Ole Kriegs18, Juergen Brosius18, Elizabeth P. Murchison19, Ravi Sachidanandam19, Carly Smith19, Gregory J. Hannon19, Enkhjargal Tsend-Ayush4, Daniel McMillan2, Rosalind Attenborough2, Willem Rens8, Malcolm A. Ferguson-Smith8, Christophe Lefevre14, Christophe Lefevre20, Julie A. Sharp14, Kevin R. Nicholas14, David A. Ray21, Michael Kube, Richard Reinhardt, Thomas H. Pringle, James Taylor22, Russell C. Jones, Brett Nixon, Jean Louis Dacheux23, Hitoshi Niwa, Yoko Sekita, Xiaoqiu Huang24, Alexander Stark25, Pouya Kheradpour25, Manolis Kellis25, Paul Flicek, Yuan Chen, Caleb Webber3, Ross C. Hardison, Joanne O. Nelson1, Kym Hallsworth-Pepin1, Kim D. Delehaunty1, Chris Markovic1, Patrick Minx1, Yucheng Feng1, Colin Kremitzki1, Makedonka Mitreva1, Jarret Glasscock1, Todd Wylie1, Patricia Wohldmann1, Prathapan Thiru1, Michael N. Nhan1, Craig Pohl1, Scott M. Smith1, Shunfeng Hou1, Marilyn B. Renfree14, Elaine R. Mardis1, Richard K. Wilson1 
08 May 2008-Nature
TL;DR: It is found that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypUS biology.
Abstract: We present a draft genome sequence of the platypus, Ornithorhynchus anatinus This monotreme exhibits a fascinating combination of reptilian and mammalian characters For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles Analysis of the first monotreme genome aligned these features with genetic innovations We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation

653 citations

Journal ArticleDOI
TL;DR: It is shown that the vast majority of nonconserved ORFs present by chance in RNA transcripts are random occurrences, and the results indicate that there has been relatively little true innovation in mammalian protein-coding genes.
Abstract: Although the Human Genome Project was completed 4 years ago, the catalog of human protein-coding genes remains a matter of controversy. Current catalogs list a total of ≈24,500 putative protein-coding genes. It is broadly suspected that a large fraction of these entries are functionally meaningless ORFs present by chance in RNA transcripts, because they show no evidence of evolutionary conservation with mouse or dog. However, there is currently no scientific justification for excluding ORFs simply because they fail to show evolutionary conservation: the alternative hypothesis is that most of these ORFs are actually valid human genes that reflect gene innovation in the primate lineage or gene loss in the other lineages. Here, we reject this hypothesis by carefully analyzing the nonconserved ORFs—specifically, their properties in other primates. We show that the vast majority of these ORFs are random occurrences. The analysis yields, as a by-product, a major revision of the current human catalogs, cutting the number of protein-coding genes to ≈20,500. Specifically, it suggests that nonconserved ORFs should be added to the human gene catalog only if there is clear evidence of an encoded protein. It also provides a principled methodology for evaluating future proposed additions to the human gene catalog. Finally, the results indicate that there has been relatively little true innovation in mammalian protein-coding genes.

616 citations