scispace - formally typeset
Search or ask a question
Author

Michael O. Woods

Other affiliations: BC Cancer Agency, St. John's University, University of Victoria  ...read more
Bio: Michael O. Woods is an academic researcher from Memorial University of Newfoundland. The author has contributed to research in topics: Colorectal cancer & Population. The author has an hindex of 35, co-authored 98 publications receiving 4205 citations. Previous affiliations of Michael O. Woods include BC Cancer Agency & St. John's University.


Papers
More filters
Journal ArticleDOI
TL;DR: This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases.
Abstract: The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases.

407 citations

01 Jan 2017
TL;DR: The results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
Abstract: Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1–4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1–2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.

407 citations

Journal ArticleDOI
TL;DR: Genome-wide association analyses based on whole-genome sequencing and imputation identify 40 new risk variants for colorectal cancer, including a strongly protective low-frequency variant at CHD1 and loci implicating signaling and immune function in disease etiology.
Abstract: To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10-8, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.

324 citations

Journal ArticleDOI
TL;DR: The data suggest that a complete loss of function of the MKKS product, and thus an inability to fold a range of target proteins, is responsible for the clinical manifestations of BBS.
Abstract: Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder predominantly characterized by obesity, retinal dystrophy, polydactyly, learning difficulties, hypogenitalism and renal malformations, with secondary features that include diabetes mellitus, endocrinological dysfunction and behavioural abnormalities. Despite an initial expectation of genetic homogeneity due to relative clinical uniformity, five BBS loci have been reported, with evidence for additional loci in the human genome; however, no genes for BBS have yet been identified. We performed a genome screen with BBS families from Newfoundland that were excluded from BBS1-5 and identified linkage with D20S189. Fine-mapping reduced the critical interval to 1.9 cM between D20S851 and D20S189, encompassing a chaperonin-like gene. Mutations in this gene were recently reported to be associated with McKusick-Kaufman syndrome (MKKS; ref. 8). Given both the mapping position and clinical similarities of these two syndromes, we screened MKKS and identified mutations in five Newfoundland and two European-American BBS pedigrees. Most are frameshift alleles that are likely to result in a non-functional protein. Our data suggest that a complete loss of function of the MKKS product, and thus an inability to fold a range of target proteins, is responsible for the clinical manifestations of BBS.

310 citations

Journal ArticleDOI
TL;DR: The models determined risk of CRC and starting ages for screening with greater accuracy than the family history only model, which is based on the current screening guideline, might serve as a first step toward developing individualized CRC prevention strategies.

206 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends thatclinical molecular genetic testing should be performed in a Clinical Laboratory Improvement Amendments–approved laboratory, with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or the equivalent.

17,834 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: Improved data access is improved with the release of a new RESTful API to support high-throughput programmatic access, an improved web interface and a new summary statistics database.
Abstract: The GWAS Catalog delivers a high-quality curated collection of all published genome-wide association studies enabling investigations to identify causal variants, understand disease mechanisms, and establish targets for novel therapies. The scope of the Catalog has also expanded to targeted and exome arrays with 1000 new associations added for these technologies. As of September 2018, the Catalog contains 5687 GWAS comprising 71673 variant-trait associations from 3567 publications. New content includes 284 full P-value summary statistics datasets for genome-wide and new targeted array studies, representing 6 × 109 individual variant-trait statistics. In the last 12 months, the Catalog's user interface was accessed by ∼90000 unique users who viewed >1 million pages. We have improved data access with the release of a new RESTful API to support high-throughput programmatic access, an improved web interface and a new summary statistics database. Summary statistics provision is supported by a new format proposed as a community standard for summary statistics data representation. This format was derived from our experience in standardizing heterogeneous submissions, mapping formats and in harmonizing content. Availability: https://www.ebi.ac.uk/gwas/.

2,878 citations

Journal ArticleDOI
TL;DR: The remarkable range of discoveriesGWASs has facilitated in population and complex-trait genetics, the biology of diseases, and translation toward new therapeutics are reviewed.
Abstract: Application of the experimental design of genome-wide association studies (GWASs) is now 10 years old (young), and here we review the remarkable range of discoveries it has facilitated in population and complex-trait genetics, the biology of diseases, and translation toward new therapeutics. We predict the likely discoveries in the next 10 years, when GWASs will be based on millions of samples with array data imputed to a large fully sequenced reference panel and on hundreds of thousands of samples with whole-genome sequencing data.

2,669 citations

Journal ArticleDOI
01 Sep 2005-Nature
TL;DR: It is found that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles.
Abstract: Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differenc ...

2,267 citations