scispace - formally typeset
Search or ask a question
Author

Michael P. Beakes

Bio: Michael P. Beakes is an academic researcher from IBM. The author has contributed to research in topics: CMOS & Phase-locked loop. The author has an hindex of 16, co-authored 32 publications receiving 1744 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work developed TrueNorth, a 65 mW real-time neurosynaptic processor that implements a non-von Neumann, low-power, highly-parallel, scalable, and defect-tolerant architecture, and successfully demonstrated the use of TrueNorth-based systems in multiple applications, including visual object recognition.
Abstract: The new era of cognitive computing brings forth the grand challenge of developing systems capable of processing massive amounts of noisy multisensory data. This type of intelligent computing poses a set of constraints, including real-time operation, low-power consumption and scalability, which require a radical departure from conventional system design. Brain-inspired architectures offer tremendous promise in this area. To this end, we developed TrueNorth, a 65 mW real-time neurosynaptic processor that implements a non-von Neumann, low-power, highly-parallel, scalable, and defect-tolerant architecture. With 4096 neurosynaptic cores, the TrueNorth chip contains 1 million digital neurons and 256 million synapses tightly interconnected by an event-driven routing infrastructure. The fully digital 5.4 billion transistor implementation leverages existing CMOS scaling trends, while ensuring one-to-one correspondence between hardware and software. With such aggressive design metrics and the TrueNorth architecture breaking path with prevailing architectures, it is clear that conventional computer-aided design (CAD) tools could not be used for the design. As a result, we developed a novel design methodology that includes mixed asynchronous–synchronous circuits and a complete tool flow for building an event-driven, low-power neurosynaptic chip. The TrueNorth chip is fully configurable in terms of connectivity and neural parameters to allow custom configurations for a wide range of cognitive and sensory perception applications. To reduce the system’s communication energy, we have adapted existing application-agnostic very large-scale integration CAD placement tools for mapping logical neural networks to the physical neurosynaptic core locations on the TrueNorth chips. With that, we have successfully demonstrated the use of TrueNorth-based systems in multiple applications, including visual object recognition, with higher performance and orders of magnitude lower power consumption than the same algorithms run on von Neumann architectures. The TrueNorth chip and its tool flow serve as building blocks for future cognitive systems, and give designers an opportunity to develop novel brain-inspired architectures and systems based on the knowledge obtained from this paper.

1,105 citations

Journal ArticleDOI
TL;DR: In this paper, a 90-nm CMOS 10-Gb/s transceiver for chip-to-chip communications is presented, where a 5-tap decision feedback equalizer is included in the receiver and a 4-tap baud-spaced feed-forward equalizer (FFE) in the transmitter.
Abstract: This paper presents a 90-nm CMOS 10-Gb/s transceiver for chip-to-chip communications. To mitigate the effects of channel loss and other impairments, a 5-tap decision feedback equalizer (DFE) is included in the receiver and a 4-tap baud-spaced feed-forward equalizer (FFE) in the transmitter. This combination of DFE and FFE permits error-free NRZ signaling over channels with losses exceeding 30 dB. Low jitter clocks for the transmitter and receiver are supplied by a PLL with LC VCO. Operation at 10-Gb/s with good power efficiency is achieved by using half-rate architectures in both transmitter and receiver. With the transmitter producing an output signal of 1200mVppd, one transmitter/receiver pair and one PLL consume 300mW. Design enhancements of a half-rate DFE employing one tap of speculative feedback and four taps of dynamic feedback allow its loop timing requirements to be met. Serial link experiments with a variety of test channels demonstrate the effectiveness of the FFE/DFE equalization

237 citations

Journal ArticleDOI
05 Dec 2005
TL;DR: In this paper, a two-level SerDes ASIC I/O core employing a four-tap feed-forward equalizer (FFE) in the transmitter and a five-tap decision-feedback equalizer in the receiver has been designed in 0.13-/spl mu/m CMOS.
Abstract: A 4.9-6.4-Gb/s two-level SerDes ASIC I/O core employing a four-tap feed-forward equalizer (FFE) in the transmitter and a five-tap decision-feedback equalizer (DFE) in the receiver has been designed in 0.13-/spl mu/m CMOS. The transmitter features a total jitter (TJ) of 35 ps p-p at 10/sup -12/ bit error rate (BER) and can output up to 1200 mVppd into a 100-/spl Omega/ differential load. Low jitter is achieved through the use of an LC-tank-based VCO/PLL system that achieves a typical random jitter of 0.6 ps over a phase noise integration range from 6 MHz to 3.2 GHz. The receiver features a variable-gain amplifier (VGA) with gain ranging from -6to +10dB in /spl sim/1dB steps, an analog peaking amplifier, and a continuously adapted DFE-based data slicer that uses a hybrid speculative/dynamic feedback architecture optimized for high-speed operation. The receiver system is designed to operate with a signal level ranging from 50 to 1200 mVppd. Error-free operation of the system has been demonstrated on lossy transmission line channels with over 32-dB loss at the Nyquist (1/2 Bd rate) frequency. The Tx/Rx pair with amortized PLL power consumes 290 mW of power from a 1.2-V supply while driving 600 mVppd and uses a die area of 0.79 mm/sup 2/.

208 citations

Proceedings ArticleDOI
18 Jun 2007
TL;DR: A 7Gb/s 2-tap current-integrating DFE implemented in a 90nm CMOS process is presented and low power dissipation is achieved by replacing resistively loaded analog current summers with resettable integrators.
Abstract: A 7Gb/s 2-tap current-integrating DFE implemented in a 90nm CMOS process is presented. Low power dissipation (9.3mW) is achieved by replacing resistively loaded analog current summers with resettable integrators. With 7Gb/s PRBS-7 data, the input sensitivity is 61 mVpp-diff, and the DFE equalizes a 16-inch backplane with 45% horizontal eye opening. The DFE core (integrators, latches, clock buffers) occupies 85 times 65mum2.

81 citations

Journal ArticleDOI
TL;DR: An I/O architecture is introduced with link redundancy such that any link can be taken out of service for periodic recalibration without interrupting data transmission and a timing recovery system using two phase rotators shared across all bits in a receive bus is presented.
Abstract: A source synchronous I/O system based on high-density silicon carrier interconnects is introduced. Benefiting from the advantages of advanced silicon packaging technologies, the system uses 50 μm-pitch μC4s to reduce I/O cell size and fine-pitch interconnects on silicon carrier to achieve record-breaking interconnect density. An I/O architecture is introduced with link redundancy such that any link can be taken out of service for periodic recalibration without interrupting data transmission. A timing recovery system using two phase rotators shared across all bits in a receive bus is presented. To demonstrate these concepts, an I/O chipset using this architecture is fabricated in 45 nm SOI CMOS technology. It includes compact DFE-IIR equalization in the receiver, as well as a new all-CMOS phase rotator. The chipset is mounted to a silicon carrier tile via Pb-free SnAg μ C4 solder bumps. Chip-to-chip communication is achieved over ultra-dense interconnects with pitches of between 8 μm and 22 μm. 8 × 10-Gb/s data is received over distances up to 4 cm with a link energy efficiency of 5.3 pJ/bit from 1 V TX and RX power supplies. 8 × 9-Gb/s data is recovered from a 6-cm link with 16.3 dB loss at 4.5 GHz with an efficiency of 6.1 pJ/bit.

67 citations


Cited by
More filters
Journal ArticleDOI
02 Jan 2017
TL;DR: The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.
Abstract: Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first revie...

800 citations

Journal ArticleDOI
TL;DR: The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNN's typically require many fewer operations and are the better candidates to process spatio-temporal data.

756 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras.
Abstract: Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of is), very high dynamic range (140dB vs. 60dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.

697 citations

Journal ArticleDOI
TL;DR: The performance of CMOS is described and variability isn't likely to decrease, since smaller devices contain fewer atoms and consequently exhibit less self-averaging, but the situation may be improved by removing most of the doping.
Abstract: Recent changes in CMOS device structures and materials motivated by impending atomistic and quantum-mechanical limitations have profoundly influenced the nature of delay and power variability. Variations in process, temperature, power supply, wear-out, and use history continue to strongly influence delay. The manner in which tolerance is specified and accommodated in high-performance design changes dramatically as CMOS technologies scale beyond a 90-nm minimum lithographic linewidth. In this paper, predominant contributors to variability in new CMOS devices are surveyed, and preferred approaches to mitigate their sources of variability are proposed. Process-, device-, and circuit-level responses to systematic and random components of tolerance are considered. Exploratory, novel structures emerging as evolutionary CMOS replacements are likely to change the nature of variability in the coming generations.

575 citations