scispace - formally typeset
Search or ask a question
Author

Michael P. Fay

Bio: Michael P. Fay is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Plasmodium falciparum & Population. The author has an hindex of 51, co-authored 175 publications receiving 12901 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A joinpoint regression model is applied to describe continuous changes in the recent trend and the grid-search method is used to fit the regression function with unknown joinpoints assuming constant variance and uncorrelated errors.
Abstract: The identification of changes in the recent trend is an important issue in the analysis of cancer mortality and incidence data. We apply a joinpoint regression model to describe such continuous changes and use the grid-search method to fit the regression function with unknown joinpoints assuming constant variance and uncorrelated errors. We find the number of significant joinpoints by performing several permutation tests, each of which has a correct significance level asymptotically. Each p-value is found using Monte Carlo methods, and the overall asymptotic significance level is maintained through a Bonferroni correction. These tests are extended to the situation with non-constant variance to handle rates with Poisson variation and possibly autocorrelated errors. The performance of these tests are studied via simulations and the tests are applied to U.S. prostate cancer incidence and mortality rates.

3,950 citations

Journal ArticleDOI
TL;DR: This work collects many of the different perspectives to which a decision rule may be applied collected in one place, since each perspective allows a different interpretation of the associated p-value.
Abstract: In a mathematical approach to hypothesis tests, we start with a clearly defined set of hypotheses and choose the test with the best properties for those hypotheses. In practice, we often start with less precise hypotheses. For example, often a researcher wants to know which of two groups generally has the larger responses, and either a t-test or a Wilcoxon-Mann-Whitney (WMW) test could be acceptable. Although both t-tests and WMW tests are usually associated with quite different hypotheses, the decision rule and p-value from either test could be associated with many different sets of assumptions, which we call perspectives. It is useful to have many of the different perspectives to which a decision rule may be applied collected in one place, since each perspective allows a different interpretation of the associated p-value. Here we collect many such perspectives for the two-sample t-test, the WMW test and other related tests. We discuss validity and consistency under each perspective and discuss recommendations between the tests in light of these many different perspectives. Finally, we briefly discuss a decision rule for testing genetic neutrality where knowledge of the many perspectives is vital to the proper interpretation of the decision rule.

814 citations

Journal ArticleDOI
15 Aug 2008-Science
TL;DR: Infection with the obligate intracellular protozoan Leishmania major (L.m.m.) appears to have evolved to both evade and exploit the innate host response to sand fly bite in order to establish and promote disease.
Abstract: Infection with the obligate intracellular protozoan Leishmania is thought to be initiated by direct parasitization of macrophages, but the early events following transmission to the skin by vector sand flies have been difficult to examine directly. Using dynamic intravital microscopy and flow cytometry, we observed a rapid and sustained neutrophilic infiltrate at localized sand fly bite sites. Invading neutrophils efficiently captured Leishmania major (L.m.) parasites early after sand fly transmission or needle inoculation, but phagocytosed L.m. remained viable and infected neutrophils efficiently initiated infection. Furthermore, neutrophil depletion reduced, rather than enhanced, the ability of parasites to establish productive infections. Thus, L.m. appears to have evolved to both evade and exploit the innate host response to sand fly bite in order to establish and promote disease.

744 citations

Journal ArticleDOI
TL;DR: This work offers an approximation to central confidence intervals for directly standardized rates, where it is assumed that the rates are distributed as a weighted sum of independent Poisson random variables.
Abstract: We offer an approximation to central confidence intervals for directly standardized rates, where we assume that the rates are distributed as a weighted sum of independent Poisson random variables. Like a recent method proposed by Dobson, Kuulasmaa, Eberle and Scherer, our method gives exact intervals whenever the standard population is proportional to the study population. In cases where the two populations differ non-proportionally, we show through simulation that our method is conservative while other methods (the Dobson et al. method and the approximate bootstrap confidence method) can be liberal.

515 citations

Journal ArticleDOI
09 Jul 2008-PLOS ONE
TL;DR: It is feasible to induce transmission blocking immunity in humans using the Pfs25/ISA 51 vaccine, but these vaccines are unexpectedly reactogenic for further development.
Abstract: BackgroundPfs25 and Pvs25, surface proteins of mosquito stage of the malaria parasites P. falciparum and P. vivax, respectively, are leading candidates for vaccines preventing malaria transmission by mosquitoes. This single blinded, dose escalating, controlled Phase 1 study assessed the safety and immunogenicity of recombinant Pfs25 and Pvs25 formulated with Montanide ISA 51, a water-in-oil emulsion.Methodology/Principal FindingsThe trial was conducted at The Johns Hopkins Center for Immunization Research, Washington DC, USA, between May 16, 2005–April 30, 2007. The trial was designed to enroll 72 healthy male and non-pregnant female volunteers into 1 group to receive adjuvant control and 6 groups to receive escalating doses of the vaccines. Due to unexpected reactogenicity, the vaccination was halted and only 36 volunteers were enrolled into 4 groups: 3 groups of 10 volunteers each were immunized with 5 µg of Pfs25/ISA 51, 5 µg of Pvs25/ISA 51, or 20 µg of Pvs25/ISA 51, respectively. A fourth group of 6 volunteers received adjuvant control (PBS/ISA 51). Frequent local reactogenicity was observed. Systemic adverse events included two cases of erythema nodosum considered to be probably related to the combination of the antigen and the adjuvant. Significant antibody responses were detected in volunteers who completed the lowest scheduled doses of Pfs25/ISA 51. Serum anti-Pfs25 levels correlated with transmission blocking activity.Conclusion/SignificanceIt is feasible to induce transmission blocking immunity in humans using the Pfs25/ISA 51 vaccine, but these vaccines are unexpectedly reactogenic for further development. This is the first report that the formulation is associated with systemic adverse events including erythema nodosum.Trial RegistrationClinicalTrials.gov NCT00295581

424 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.

16,028 citations

Journal ArticleDOI
TL;DR: Slow momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers, and it is notable that long‐term rapid increases in liver cancer mortality have attenuated in women and stabilized in men.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.

15,080 citations

Journal ArticleDOI
TL;DR: Overall cancer incidence trends are stable in women, but declining by 3.1% per year in men, much of which is because of recent rapid declines in prostate cancer diagnoses, and brain cancer has surpassed leukemia as the leading cause of cancer death among children and adolescents.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute (Surveillance, Epidemiology, and End Results [SEER] Program), the Centers for Disease Control and Prevention (National Program of Cancer Registries), and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2016, 1,685,210 new cancer cases and 595,690 cancer deaths are projected to occur in the United States. Overall cancer incidence trends (13 oldest SEER registries) are stable in women, but declining by 3.1% per year in men (from 2009-2012), much of which is because of recent rapid declines in prostate cancer diagnoses. The cancer death rate has dropped by 23% since 1991, translating to more than 1.7 million deaths averted through 2012. Despite this progress, death rates are increasing for cancers of the liver, pancreas, and uterine corpus, and cancer is now the leading cause of death in 21 states, primarily due to exceptionally large reductions in death from heart disease. Among children and adolescents (aged birth-19 years), brain cancer has surpassed leukemia as the leading cause of cancer death because of the dramatic therapeutic advances against leukemia. Accelerating progress against cancer requires both increased national investment in cancer research and the application of existing cancer control knowledge across all segments of the population.

14,664 citations

Journal ArticleDOI
TL;DR: The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.

14,011 citations

Journal ArticleDOI
TL;DR: The American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2017, 1,688,780 new cancer cases and 600,920 cancer deaths are projected to occur in the United States. For all sites combined, the cancer incidence rate is 20% higher in men than in women, while the cancer death rate is 40% higher. However, sex disparities vary by cancer type. For example, thyroid cancer incidence rates are 3-fold higher in women than in men (21 vs 7 per 100,000 population), despite equivalent death rates (0.5 per 100,000 population), largely reflecting sex differences in the "epidemic of diagnosis." Over the past decade of available data, the overall cancer incidence rate (2004-2013) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2005-2014) declined by about 1.5% annually in both men and women. From 1991 to 2014, the overall cancer death rate dropped 25%, translating to approximately 2,143,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the cancer death rate was 15% higher in blacks than in whites in 2014, increasing access to care as a result of the Patient Protection and Affordable Care Act may expedite the narrowing racial gap; from 2010 to 2015, the proportion of blacks who were uninsured halved, from 21% to 11%, as it did for Hispanics (31% to 16%). Gains in coverage for traditionally underserved Americans will facilitate the broader application of existing cancer control knowledge across every segment of the population. CA Cancer J Clin 2017;67:7-30. © 2017 American Cancer Society.

13,427 citations