scispace - formally typeset
Search or ask a question

Showing papers by "Michael P. Hickey published in 2001"


Journal ArticleDOI
TL;DR: In this article, the authors presented 15 months of observations, from February 1996 to May 1997, for AGW frequency and propagation direction from a northern latitude site, Urbana Illinois (40°N).
Abstract: From analyzing nine months of airglow imaging observations of atmospheric gravity waves (AGWs) over Adelaide, Australia (35°S) [Walterscheid et al., 1999] have proposed that many of the quasi-monochromatic waves seen in the images were primarily thermally ducted. Here are presented 15 months of observations, from February 1996 to May 1997, for AGW frequency and propagation direction from a northern latitude site, Urbana Illinois (40°N). As Adelaide, Urbana is geographically distant from large orographic features. Similar to what was found in Adelaide, the AGWs seem to originate from a preferred location during the time period around summer solstice. In conjunction with these airglow data there exists MF radar data to provide winds in the 90 km region and near-simultaneous lidar data which provide a temperature climatology. The temperature data have previously been analyzed by States and Gardner [2000]. The temperature and wind data are used here in a full wave model analysis to determine the characteristics of the wave ducting and wave reflection during the 15 month observation period. This model analysis is applied to this and another existing data set recently described by Nakamura et al. [1999]. It is shown that the existence of a thermal duct around summer solstice can plausibly account for our observations. However, the characteristics of the thermal duct and the ability of waves to be ducted is also greatly dependent on the characteristics of the background wind. A simple model is constructed to simulate the trapping of these waves by such a duct. It is suggested that the waves seen over Urbana originate no more than a few thousand kilometers from the observation site.

104 citations


Journal ArticleDOI
TL;DR: In this paper, a numerical model is used to study the dissipation in the thermosphere of upward propagating acoustic waves, and it is shown that viscous heating cannot be calculated from the divergence of the wave mechanical energy flux.
Abstract: A numerical model is used to study the dissipation in the thermosphere of upward propagating acoustic waves. Whereas dissipating gravity waves can cool the upper atmosphere through the effects of sensible heat flux divergence, it is found that acoustic waves mainly heat the thermosphere by viscous dissipation. Though the amplitudes of acoustic waves in the atmosphere are poorly constrained, the calculations suggest that dissipating acoustic waves can locally heat the thermosphere at rates of tens of kelvins per day and thereby contribute to the thermospheric energy balance. It is shown that viscous heating cannot be calculated from the divergence of the wave mechanical energy flux. Acoustic waves that are barely detectable at mesopause heights can become significant heaters of the atmosphere high in the thermosphere. We suggest that acoustic waves might be responsible for heating the equatorial F region to produce the hot spot observed in the O I 630 nm airglow over the Andes Mountains.

61 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of wave-perturbed composition on gravity waves propagating through the lower thermosphere were examined using a one-gas full-wave model, where the governing equations apply only to the total gas and the physical properties of the gas that depend on composition (mean molecular weight and specific heat) are height-dependent.
Abstract: Many models of the thermosphere employ the one-gas approximation where the governing equations apply only to the total gas and the physical properties of the gas that depend on composition (mean molecular weight and specific heats) are height-dependent. It is further assumed that the physical properties of the gas are locally constant; thus motion-induced perturbations are nil. However, motion in a diffusively separated atmosphere perturbs local values of mean molecular weight and specific heats. These motion-induced changes are opposed by mutual diffusion of the constituent gases, which attempts to restore diffusive equilibrium. Assuming that composition is locally constant is equivalent to assuming that diffusion instantaneously damps the changes that winds attempt to produce. This is the limit of fast diffusion. In the limit of slow diffusion, gas properties are constant (conserved) following the motion but are perturbed locally by advection. An analysis of the static stability shows that composition effects significantly change the static stability, with greater changes for the slow-diffusion limit than for the fast-diffusion limit. We have used a one-gas full-wave model to examine the effects of wave-perturbed composition on gravity waves propagating through the lower thermosphere. We have augmented the conventional system (fixed gas properties) with predictive equations for composition-dependent gas properties. These equations include vertical advection and mutual diffusion. The latter is included in parameterized form as second-order scale-dependent diffusion. We have found that the fast diffusion implied by locally fixed properties has a significant effect on the dynamics. Predicted temperatures are larger for locally fixed composition than for conserved composition. The simulations with parameterized mutual diffusion gave results that are much closer to the results for conserved gas properties than for fixed properties. We found that the divergence between the fast and slow limits was greatest for fast waves and for colder thermospheres. This is because the propagation characteristics of fast waves are sensitive to changes in the static stability and because compositional gradients are stronger for colder thermospheres. We conclude that future models that use the one-gas approximation for fast waves in the lower thermosphere should include, at minimum, the simplification of conserved rather than fixed properties, especially for colder thermospheres.

26 citations


Journal ArticleDOI
TL;DR: In this article, the authors employ a 2-dimensional, time-dependent, fully nonlinear model of minor species in the mesopause region and our Spectral Full-Wave Model to simulate the response of the minor species and the OI 5577 A airglow to a gravity wave packet in the mid-to-late mesophere region.
Abstract: We employ a 2-dimensional, time-dependent, fully nonlinear model of minor species in the mesopause region and our Spectral Full-Wave Model to simulate the response of minor species and the OI 5577 A airglow to a gravity wave packet in the mesopause region. Gravity waves affect the time-averaged distribution of minor species in the mesosphere and lower thermosphere (MLT) region through constituent fluxes induced by violation of the non-acceleration conditions due to wave transience and dissipation. In addition, wave perturbed chemistry can induce a flux of chemically active species. Simulations are performed with nominal values of eddy diffusion coefficients in the MLT region, and also using very small values in order to assess the comparative effects of diffusion and wave fluxes. The wave-driven secular variation leads to a strong increase in airglow brightness over a time period of ∼2 hrs. In contrast to this, diffusion of minor species leads to a decrease in airglow brightness. The combined effects of the two can lead to secular variations of airglow brightness that resemble those for a long period (>6 hr) wave. These results have important implications for the interpretation of airglow variations observed in the MLT region.

19 citations


Journal ArticleDOI
TL;DR: In this paper, a numerical full-wave model is used to study the response of the O2 atmospheric airglow to ducted gravity waves in the mesopause region, and significant departures from the predictions of the basic theory are obtained when the ducting in the presence of the eddy and molecular diffusion of heat and momentum in a nonisothermal background atmosphere.
Abstract: A numerical full-wave model is used to study the response of the O2 atmospheric airglow to ducted gravity waves in the mesopause region. For an isothermal, quasi-adiabatic, and motionless background atmosphere the calculated phase differences between airglow brightness fluctuations and fluctuations of temperatures derived from the airglow, as given by Krassovsky's ratio, are in good agreement with the predictions of published theory. Significant departures from the predictions of the basic theory are obtained when we consider ducting in the presence of the eddy and molecular diffusion of heat and momentum in a nonisothermal background atmosphere. Wind shears also affect the phase difference between airglow brightness fluctuations and temperatures derived therefrom. Nonisothermal effects and the effects of diffusion and winds are largest for the slower waves we consider. Only the fastest of the ducted waves considered conform to the basic theory, while the airglow signatures associated with slower, more weakly ducted waves may be easily misinterpreted as being due to propagating waves. We conclude that for the short horizontal wavelength waves observed in the airglow, the phase of Krassovsky's ratio may be useful to identify wave ducting only for the shortest period, fastest waves. Therefore identification of ducted waves using Krassovsky's ratio will be difficult even if the required high temporal resolution measurements become available.

19 citations


Journal ArticleDOI
TL;DR: In this paper, a full wave model and a WKB-type model were combined with a chemical-airglow fluctuation model to assess the strength of wave reflection and also to explicitly calculate the phase difference between the airglow brightness and the temperature fluctuations.
Abstract: During the Arecibo Initiative for Dynamics of the Atmosphere (AIDA) campaign in 1989 a characteristic of gravity wave perturbations observed in mesopause region airglow emissions was that airglow brightness fluctuations and airglow-derived temperature fluctuations often occurred either in phase or in antiphase. This stimulated the development of a theory suggesting that such in-phase fluctuations were most probably the result of strong reflections occurring in the mesosphere and lower thermosphere region. Recent examination of a particular wave event and application of simple WKB-type theory has appeared to support this hypothesis. Here we use a full-wave model and a WKB-type model, each coupled with a chemical-airglow fluctuation model describing O2 atmospheric and OH Meinel airglow fluctuations, to assess the strength of wave reflection and also to explicitly calculate the phase difference between the airglow brightness and the temperature fluctuations. Our results suggest that reflection is not strong for the particular wave event, and the model produces fairly large phase differences between the airglow brightness and the temperature fluctuations (∼35° and ∼134°–165° for the O2 atmospheric and OH airglow emissions, respectively). These results are not particularly sensitive to the nominal mean winds used in the simulations. There is an instance when a region of minimum refractive index occurs directly above a region in which reflection is strongest, suggesting that the two are related. However, the reflection does not appear to be strong. Our results suggest that chemical effects can account for the inferred phases of the observed airglow fluctuations and that effects associated with wave reflection appear to play a relatively minor role in the airglow fluctuations.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the authors simulate space-based, sublimb viewing observations of airglow brightness fluctuations caused by atmospheric gravity wave interactions with the O2 atmospheric air glow, and demonstrate that the brightness fluctuations observed for the optically thick 0-0 band emission will always appear stronger for waves traveling toward the observer (the satellite).
Abstract: We simulate space-based, sublimb viewing observations of airglow brightness fluctuations caused by atmospheric gravity wave interactions with the O2 atmospheric airglow, and we demonstrate that because of the geometry associated with such observations, the brightness fluctuations observed for the optically thick 0–0 band emission will always appear stronger for waves traveling toward the observer (the satellite). The effect should be most noticeable for waves having relatively small vertical wavelengths (∼10 km) and horizontal wavelengths of 50 km or greater. For waves of short (∼100 km) horizontal wavelength, the brightness fluctuation anisotropy with respect to viewing direction may also be evident in the optically thin 0–1 band emission. We demonstrate that the waves will be observable despite the fact that an instrument requires a certain finite integration time to achieve a desired signal-to-noise ratio. Therefore the 180° ambiguity in wave propagation direction associated with space-based observations may be eliminated for waves of small vertical wavelength that are dissipating in the upper mesosphere and lower thermosphere. It is these same waves that may be expected to be important to the energy and momentum budgets of the mesosphere/lower thermosphere region.

2 citations