scispace - formally typeset
Search or ask a question
Author

Michael R. Edwards

Bio: Michael R. Edwards is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Rhinovirus & Asthma. The author has an hindex of 46, co-authored 158 publications receiving 8887 citations. Previous affiliations of Michael R. Edwards include Imperial College Healthcare & University of Bern.
Topics: Rhinovirus, Asthma, Interferon, Cytokine, Amino acid


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors show deficient induction of interferon-λs by rhinovirus in primary bronchial epithelial cells and alveolar macrophages, which was highly correlated with severity of rhinovirus induced asthma exacerbation and virus load in experimentally infected human volunteers.
Abstract: Rhinoviruses are the major cause of asthma exacerbations, and asthmatics have increased susceptibility to rhinovirus and risk of invasive bacterial infections. Here we show deficient induction of interferon-λs by rhinovirus in asthmatic primary bronchial epithelial cells and alveolar macrophages, which was highly correlated with severity of rhinovirus-induced asthma exacerbation and virus load in experimentally infected human volunteers. Induction by lipopolysaccharide in asthmatic macrophages was also deficient and correlated with exacerbation severity. These results identify previously unknown mechanisms of susceptibility to infection in asthma and suggest new approaches to prevention and/or treatment of asthma exacerbations.

927 citations

Journal ArticleDOI
TL;DR: The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions, which initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses.
Abstract: The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.

564 citations

Journal ArticleDOI
TL;DR: IL-33 and type 2 cytokines are induced during a rhinovirus-induced asthma exacerbation in vivo and relate to exacerbation severity, which is a novel therapeutic approach for asthma exacerbations.
Abstract: Rationale: Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cell–derived cytokine IL-33 plays ...

473 citations

Journal ArticleDOI
TL;DR: A new model of COPD exacerbation is developed that strongly supports a causal relationship between rhinovirus infection and COPD alleviation and impaired IFN production and neutrophilic inflammation may be important mechanisms in virus-induced COPd exacerbations.
Abstract: Rationale: Respiratory virus infections are associated with chronic obstructive pulmonary disease (COPD) exacerbations, but a causative relationship has not been proven. Studies of naturally occurring exacerbations are difficult and the mechanisms linking virus infection to exacerbations are poorly understood. We hypothesized that experimental rhinovirus infection in subjects with COPD would reproduce the features of naturally occurring COPD exacerbations and is a valid model of COPD exacerbations.Objectives: To evaluate experimental rhinovirus infection as a model of COPD exacerbation and to investigate the mechanisms of virus-induced exacerbations.Methods: We used experimental rhinovirus infection in 13 subjects with COPD and 13 nonobstructed control subjects to investigate clinical, physiologic, pathologic, and antiviral responses and relationships between virus load and these outcomes.Measurements and Main Results: Clinical data; inflammatory mediators in blood, sputum, and bronchoalveolar lavage; and...

349 citations

Journal ArticleDOI
TL;DR: Three novel mouse models of rhinovirus infection have features similar to those observed in rhinvirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.
Abstract: Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.

349 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction.
Abstract: Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.

3,947 citations

Journal ArticleDOI
TL;DR: The European Position Paper on Rhinosinusitis and Nasal Polyps 2020 is the update of similar evidence based position papers published in 2005 and 2007 and 2012 and addresses areas not extensively covered in EPOS2012 such as paediatric CRS and sinus surgery.
Abstract: The European Position Paper on Rhinosinusitis and Nasal Polyps 2020 is the update of similar evidence based position papers published in 2005 and 2007 and 2012. The core objective of the EPOS2020 guideline is to provide revised, up-to-date and clear evidence-based recommendations and integrated care pathways in ARS and CRS. EPOS2020 provides an update on the literature published and studies undertaken in the eight years since the EPOS2012 position paper was published and addresses areas not extensively covered in EPOS2012 such as paediatric CRS and sinus surgery. EPOS2020 also involves new stakeholders, including pharmacists and patients, and addresses new target users who have become more involved in the management and treatment of rhinosinusitis since the publication of the last EPOS document, including pharmacists, nurses, specialised care givers and indeed patients themselves, who employ increasing self-management of their condition using over the counter treatments. The document provides suggestions for future research in this area and offers updated guidance for definitions and outcome measurements in research in different settings. EPOS2020 contains chapters on definitions and classification where we have defined a large number of terms and indicated preferred terms. A new classification of CRS into primary and secondary CRS and further division into localized and diffuse disease, based on anatomic distribution is proposed. There are extensive chapters on epidemiology and predisposing factors, inflammatory mechanisms, (differential) diagnosis of facial pain, allergic rhinitis, genetics, cystic fibrosis, aspirin exacerbated respiratory disease, immunodeficiencies, allergic fungal rhinosinusitis and the relationship between upper and lower airways. The chapters on paediatric acute and chronic rhinosinusitis are totally rewritten. All available evidence for the management of acute rhinosinusitis and chronic rhinosinusitis with or without nasal polyps in adults and children is systematically reviewed and integrated care pathways based on the evidence are proposed. Despite considerable increases in the amount of quality publications in recent years, a large number of practical clinical questions remain. It was agreed that the best way to address these was to conduct a Delphi exercise . The results have been integrated into the respective sections. Last but not least, advice for patients and pharmacists and a new list of research needs are included. The full document can be downloaded for free on the website of this journal: http://www.rhinologyjournal.com.

2,853 citations

Journal ArticleDOI
01 Apr 2010-Nature
TL;DR: It is concluded that the heritability void left by genome-wide association studies will not be accounted for by common CNVs, and 30 loci with CNVs that are candidates for influencing disease susceptibility are identified.
Abstract: Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.

1,892 citations

Journal ArticleDOI
TL;DR: The identification of molecules that modulate the release of NETs has helped to refine the view of the role of neutrophils in immune protection, inflammatory and autoimmune diseases and cancer.
Abstract: Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.

1,564 citations

Journal ArticleDOI
TL;DR: Results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans are discussed and the extraordinary heterogeneity of asthma is described.
Abstract: Asthma is a common disease that affects 300 million people worldwide. Given the large number of eosinophils in the airways of people with mild asthma, and verified by data from murine models, asthma was long considered the hallmark T helper type 2 (T(H)2) disease of the airways. It is now known that some asthmatic inflammation is neutrophilic, controlled by the T(H)17 subset of helper T cells, and that some eosinophilic inflammation is controlled by type 2 innate lymphoid cells (ILC2 cells) acting together with basophils. Here we discuss results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans and describe the extraordinary heterogeneity of asthma.

1,268 citations