scispace - formally typeset
Search or ask a question
Author

Michael R. Green

Bio: Michael R. Green is an academic researcher from University of Texas MD Anderson Cancer Center. The author has contributed to research in topics: RNA splicing & RNA. The author has an hindex of 126, co-authored 537 publications receiving 57447 citations. Previous affiliations of Michael R. Green include Eppley Institute for Research in Cancer and Allied Diseases & United States University.


Papers
More filters
Journal ArticleDOI
TL;DR: CIBERSORT outperformed other methods with respect to noise, unknown mixture content and closely related cell types when applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen and fixed tissues, including solid tumors.
Abstract: We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content and closely related cell types CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersortstanfordedu/)

6,967 citations

Journal ArticleDOI
TL;DR: In this paper, a simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described, based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter.
Abstract: A simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described. This in vitro transcription system is based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter. We have constructed convenient cloning vectors that contain an SP6 promoter immediately upstream from a polylinker sequence. Using these SP6 vectors, optimal conditions have been established for in vitro RNA synthesis. The advantages and uses of SP6 derived RNAs as probes for nucleic acid blot and solution hybridizations are demonstrated. We show that single stranded RNA probes of a high specific activity are easy to prepare and can significantly increase the sensitivity of nucleic acid hybridization methods. Furthermore, the SP6 transcription system can be used to prepare RNA substrates for studies on RNA processing (1,5,9) and translation (see accompanying paper).

5,732 citations

Journal ArticleDOI
21 Jul 1994-Nature
TL;DR: Fluorescence anisotropy measurements are used to define the equi-librium binding parameters of the phosphoCREB:CBP interaction and report here that CBP can activate transcription through a region in its carboxy terminus.
Abstract: The transcription factor CREB binds to a DNA element known as the cAMP-regulated enhancer (CRE). CREB is activated through phosphorylation by protein kinase A (PKA), but precisely how phosphorylation stimulates CREB function is unknown. One model is that phosphorylation may allow the recruitment of coactivators which then interact with basal transcription factors. We have previously identified a nuclear protein of M(r)265K, CBP, that binds specifically to the PKA-phosphorylated form of CREB. We have used fluorescence anisotropy measurements to define the equilibrium binding parameters of the phosphoCREB:CBP interaction and report here that CBP can activate transcription through a region in its carboxy terminus. The activation domain of CBP interacts with the basal transcription factor TFIIB through a domain that is conserved in the yeast coactivator ADA-1 (ref. 8). Consistent with its role as a coactivator, CBP augments the activity of phosphorylated CREB to activate transcription of cAMP-responsive genes.

1,471 citations

Journal ArticleDOI
28 Oct 2010-Blood
TL;DR: High-resolution copy number data with transcriptional profiles are integrated and identified the immunoregulatory genes, PD-L1 andPD-L2, as key targets at the 9p24.1 amplification peak in HL and MLBCL cell lines, defining the PD-1 pathway and JAK2 as complementary rational therapeutic targets.

1,075 citations

Journal ArticleDOI
TL;DR: The methods currently used to identify transcriptional regulatory elements are discussed, and the ability of these methods to be scaled up for the purpose of annotating the entire human genome is discussed.
Abstract: The faithful execution of biological processes requires a precise and carefully orchestrated set of steps that depend on the proper spatial and temporal expression of genes. Here we review the various classes of transcriptional regulatory elements (core promoters, proximal promoters, distal enhancers, silencers, insulators/boundary elements, and locus control regions) and the molecular machinery (general transcription factors, activators, and coactivators) that interacts with the regulatory elements to mediate precisely controlled patterns of gene expression. The biological importance of transcriptional regulation is highlighted by examples of how alterations in these transcriptional components can lead to disease. Finally, we discuss the methods currently used to identify transcriptional regulatory elements, and the ability of these methods to be scaled up for the purpose of annotating the entire human genome.

955 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
TL;DR: The GAL4 system, a system for targeted gene expression that allows the selective activation of any cloned gene in a wide variety of tissue- and cell-specific patterns, has been designed and used to expand the domain of embryonic expression of the homeobox protein even-skipped.
Abstract: We have designed a system for targeted gene expression that allows the selective activation of any cloned gene in a wide variety of tissue- and cell-specific patterns. The gene encoding the yeast transcriptional activator GAL4 is inserted randomly into the Drosophila genome to drive GAL4 expression from one of a diverse array of genomic enhancers. It is then possible to introduce a gene containing GAL4 binding sites within its promoter, to activate it in those cells where GAL4 is expressed, and to observe the effect of this directed misexpression on development. We have used GAL4-directed transcription to expand the domain of embryonic expression of the homeobox protein even-skipped. We show that even-skipped represses wingless and transforms cells that would normally secrete naked cuticle into denticle secreting cells. The GAL4 system can thus be used to study regulatory interactions during embryonic development. In adults, targeted expression can be used to generate dominant phenotypes for use in genetic screens. We have directed expression of an activated form of the Dras2 protein, resulting in dominant eye and wing defects that can be used in screens to identify other members of the Dras2 signal transduction pathway.

9,460 citations

Journal ArticleDOI
TL;DR: In this paper, a simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described, based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter.
Abstract: A simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described. This in vitro transcription system is based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter. We have constructed convenient cloning vectors that contain an SP6 promoter immediately upstream from a polylinker sequence. Using these SP6 vectors, optimal conditions have been established for in vitro RNA synthesis. The advantages and uses of SP6 derived RNAs as probes for nucleic acid blot and solution hybridizations are demonstrated. We show that single stranded RNA probes of a high specific activity are easy to prepare and can significantly increase the sensitivity of nucleic acid hybridization methods. Furthermore, the SP6 transcription system can be used to prepare RNA substrates for studies on RNA processing (1,5,9) and translation (see accompanying paper).

5,732 citations

Journal ArticleDOI
19 May 2016-Blood
TL;DR: The revision clarifies the diagnosis and management of lesions at the very early stages of lymphomagenesis, refines the diagnostic criteria for some entities, details the expanding genetic/molecular landscape of numerous lymphoid neoplasms and their clinical correlates, and refers to investigations leading to more targeted therapeutic strategies.

5,321 citations