scispace - formally typeset
Search or ask a question
Author

Michael R. Jaff

Bio: Michael R. Jaff is an academic researcher from Harvard University. The author has contributed to research in topics: Angioplasty & Stent. The author has an hindex of 82, co-authored 442 publications receiving 28891 citations. Previous affiliations of Michael R. Jaff include American College of Cardiology & Auckland City Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Stenting with the use of an emboli-protection device is a less invasive revascularization strategy than endarterectomy in carotid-artery disease and among patients with severe carotidsartery stenosis and coexisting conditions, it is found that the less invasive strategy, stenting, was not inferior to endarteretomy.
Abstract: background Carotid endarterectomy is more effective than medical management in the prevention of stroke in patients with severe symptomatic or asymptomatic atherosclerotic carotidartery stenosis. Stenting with the use of an emboli-protection device is a less invasive revascularization strategy than endarterectomy in carotid-artery disease. methods We conducted a randomized trial comparing carotid-artery stenting with the use of an emboli-protection device to endarterectomy in 334 patients with coexisting conditions that potentially increased the risk posed by endarterectomy and who had either a symptomatic carotid-artery stenosis of at least 50 percent of the luminal diameter or an asymptomatic stenosis of at least 80 percent. The primary end point of the study was the cumulative incidence of a major cardiovascular event at 1 year — a composite of death, stroke, or myocardial infarction within 30 days after the intervention or death or ipsilateral stroke between 31 days and 1 year. The study was designed to test the hypothesis that the less invasive strategy, stenting, was not inferior to endarterectomy. results The primary end point occurred in 20 patients randomly assigned to undergo carotidartery stenting with an emboli-protection device (cumulative incidence, 12.2 percent) and in 32 patients randomly assigned to undergo endarterectomy (cumulative incidence, 20.1 percent; absolute difference, i7.9 percentage points; 95 percent confidence interval, i16.4 to 0.7 percentage points; P=0.004 for noninferiority, and P=0.053 for superiority). At one year, carotid revascularization was repeated in fewer patients who had received stents than in those who had undergone endarterectomy (cumulative incidence, 0.6 percent vs. 4.3 percent; P=0.04). conclusions Among patients with severe carotid-artery stenosis and coexisting conditions, carotid stenting with the use of an emboli-protection device is not inferior to carotid endarterectomy.

2,568 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address the management of massive and submassive pulmonary embolisms (PE), iliofemoral deep vein thrombosis (IFDVT), and chronic thromboembolic pulmonary hypertension (CTEPH).
Abstract: Venous thromboembolism (VTE) is responsible for the hospitalization of >250 000 Americans annually and represents a significant risk for morbidity and mortality. Despite the publication of evidence-based clinical practice guidelines to aid in the management of VTE in its acute and chronic forms, the clinician is frequently confronted with manifestations of VTE for which data are sparse and optimal management is unclear. In particular, the optimal use of advanced therapies for acute VTE, including thrombolysis and catheter-based therapies, remains uncertain. This report addresses the management of massive and submassive pulmonary embolism (PE), iliofemoral deep vein thrombosis (IFDVT),and chronic thromboembolic pulmonary hypertension (CTEPH). The goal is to provide practical advice to enable the busy clinician to optimize the management of patients with these severe manifestations of VTE. Although this document makes recommendations for management, optimal medical decisions must incorporate other factors, including patient wishes, quality of life, and life expectancy based on age and comorbidities. The appropriateness of these recommendations for a specific patient may vary depending on these factors and will be best judged by the bedside clinician.

1,776 citations

Journal ArticleDOI
TL;DR: Although IMT has been suggested to represent an important risk marker, according to the current evidence it does not fulfill the characteristics of an accepted risk factor and will help to improve the power of randomized clinical trials incorporating IMT measurements and to facilitate the merging of large databases for meta-analyses.
Abstract: Intima-media thickness (IMT) is increasingly used as a surrogate end point of vascular outcomes in clinical trials aimed at determining the success of interventions that lower risk factors for atherosclerosis and associated diseases (stroke, myocardial infarction and peripheral artery diseases). The necessity to promote further criteria to distinguish early atherosclerotic plaque formation from thickening of IMT and to standardize IMT measurements is expressed through this updated consensus. Plaque is defined as a focal structure that encroaches into the arterial lumen of at least 0.5 mm or 50% of the surrounding IMT value or demonstrates a thickness >1.5 mm as measured from the media-adventitia interface to the intima-lumen interface. Standard use of IMT measurements is based on physics, technical and disease-related principles as well as agreements on how to perform, interpret and document study results. Harmonization of carotid image acquisition and analysis is needed for the comparison of the IMT results obtained from epidemiological and interventional studies around the world. The consensus concludes that there is no need to 'treat IMT values' nor to monitor IMT values in individual patients apart from exceptions named, which emphasize that inside randomized clinical trials should be performed. Although IMT has been suggested to represent an important risk marker, according to the current evidence it does not fulfill the characteristics of an accepted risk factor. Standardized methods recommended in this consensus statement will foster homogenous data collection and analysis. This will help to improve the power of randomized clinical trials incorporating IMT measurements and to facilitate the merging of large databases for meta-analyses.

1,459 citations

Journal ArticleDOI
TL;DR: This updated consensus document delineates further criteria to distinguish early atherosclerotic plaque formation from thickening of IMT and recommends against serial monitoring in individual patients.
Abstract: Intima-media thickness (IMT) provides a surrogate end point of cardiovascular outcomes in clinical trials evaluating the efficacy of cardiovascular risk factor modification. Carotid artery plaque further adds to the cardiovascular risk assessment. It is defined as a focal structure that encroaches into the arterial lumen of at least 0.5 mm or 50% of the surrounding IMT value or demonstrates a thickness >1.5 mm as measured from the media-adventitia interface to the intima-lumen interface. The scientific basis for use of IMT in clinical trials and practice includes ultrasound physics, technical and disease-related principles as well as best practice on the performance, interpretation and documentation of study results. Comparison of IMT results obtained from epidemiological and interventional studies around the world relies on harmonization on approaches to carotid image acquisition and analysis. This updated consensus document delineates further criteria to distinguish early atherosclerotic plaque formation from thickening of IMT. Standardized methods will foster homogenous data collection and analysis, improve the power of randomized clinical trials incorporating IMT and plaque measurements and facilitate the merging of large databases for meta-analyses. IMT results are applied to individual patients as an integrated assessment of cardiovascular risk factors. However, this document recommends against serial monitoring in individual patients.

1,257 citations

Journal ArticleDOI
TL;DR: Renal-artery stenting did not confer a significant benefit with respect to the prevention of clinical events when added to comprehensive, multifactorial medical therapy in people with atherosclerotic renal-arterY stenosis and hypertension or chronic kidney disease.
Abstract: BACKGROUND Atherosclerotic renal-artery stenosis is a common problem in the elderly. Despite two randomized trials that did not show a benefit of renal-artery stenting with respect to kidney function, the usefulness of stenting for the prevention of major adverse renal and cardiovascular events is uncertain. METHODS We randomly assigned 947 participants who had atherosclerotic renal-artery stenosis and either systolic hypertension while taking two or more antihypertensive drugs or chronic kidney disease to medical therapy plus renal-artery stenting or medical therapy alone. Participants were followed for the occurrence of adverse cardiovascular and renal events (a composite end point of death from cardiovascular or renal causes, myocardial infarction, stroke, hospitalization for congestive heart failure, progressive renal insufficiency, or the need for renal-replacement therapy). RESULTS Over a median follow-up period of 43 months (interquartile range, 31 to 55), the rate of the primary composite end point did not differ significantly between participants who underwent stenting in addition to receiving medical therapy and those who received medical therapy alone (35.1% and 35.8%, respectively; hazard ratio with stenting, 0.94; 95% confidence interval [CI], 0.76 to 1.17; P = 0.58). There were also no significant differences between the treatment groups in the rates of the individual components of the primary end point or in all-cause mortality. During follow-up, there was a consistent modest difference in systolic blood pressure favoring the stent group (−2.3 mm Hg; 95% CI, −4.4 to −0.2; P = 0.03). CONCLUSIONS Renal-artery stenting did not confer a significant benefit with respect to the prevention of clinical events when added to comprehensive, multifactorial medical therapy in people with atherosclerotic renal-artery stenosis and hypertension or chronic kidney disease. (Funded by the National Heart, Lung and Blood Institute and others; ClinicalTrials.gov number, NCT00081731.) abstr act

746 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Jiménez, ScD, SM Lori Chaffin Jordan,MD, PhD Suzanne E. Judd, PhD
Abstract: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Blaha, MD, MPH Stephanie E. Chiuve, ScD Mary Cushman, MD, MSc, FAHA Sandeep R. Das, MD, MPH, FAHA Rajat Deo, MD, MTR Sarah D. de Ferranti, MD, MPH James Floyd, MD, MS Myriam Fornage, PhD, FAHA Cathleen Gillespie, MS Carmen R. Isasi, MD, PhD, FAHA Monik C. Jiménez, ScD, SM Lori Chaffin Jordan, MD, PhD Suzanne E. Judd, PhD Daniel Lackland, DrPH, FAHA Judith H. Lichtman, PhD, MPH, FAHA Lynda Lisabeth, PhD, MPH, FAHA Simin Liu, MD, ScD, FAHA Chris T. Longenecker, MD Rachel H. Mackey, PhD, MPH, FAHA Kunihiro Matsushita, MD, PhD, FAHA Dariush Mozaffarian, MD, DrPH, FAHA Michael E. Mussolino, PhD, FAHA Khurram Nasir, MD, MPH, FAHA Robert W. Neumar, MD, PhD, FAHA Latha Palaniappan, MD, MS, FAHA Dilip K. Pandey, MBBS, MS, PhD, FAHA Ravi R. Thiagarajan, MD, MPH Mathew J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Rodriguez, MD, MPH, FAHA Gregory A. Roth, MD, MPH Wayne D. Rosamond, PhD, FAHA Comilla Sasson, MD, PhD, FAHA Amytis Towfighi, MD Connie W. Tsao, MD, MPH Melanie B. Turner, MPH Salim S. Virani, MD, PhD, FAHA Jenifer H. Voeks, PhD Joshua Z. Willey, MD, MS John T. Wilkins, MD Jason HY. Wu, MSc, PhD, FAHA Heather M. Alger, PhD Sally S. Wong, PhD, RD, CDN, FAHA Paul Muntner, PhD, MHSc On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics—2017 Update

7,190 citations

Journal ArticleDOI
TL;DR: The goals of this new consensus are to provide an abbreviated document to focus on key aspects of diagnosis and management, and to update the information based on new publications and the newer guidelines, but not to add an extensive list of references.

7,099 citations

Journal ArticleDOI
TL;DR: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne
Abstract: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne E; Kissela, Brett M; Lichtman, Judith H; Lisabeth, Lynda D; Liu, Simin; Mackey, Rachel H; Magid, David J; McGuire, Darren K; Mohler, Emile R; Moy, Claudia S; Muntner, Paul; Mussolino, Michael E; Nasir, Khurram; Neumar, Robert W; Nichol, Graham; Palaniappan, Latha; Pandey, Dilip K; Reeves, Mathew J; Rodriguez, Carlos J; Rosamond, Wayne; Sorlie, Paul D; Stein, Joel; Towfighi, Amytis; Turan, Tanya N; Virani, Salim S; Woo, Daniel; Yeh, Robert W; Turner, Melanie B; American Heart Association Statistics Committee; Stroke Statistics Subcommittee

6,181 citations

Journal ArticleDOI
TL;DR: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.
Abstract: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Benjamin, MD, ScM, FAHA, Chair Paul Muntner, PhD, MHS, FAHA, Vice Chair Alvaro Alonso, MD, PhD, FAHA Marcio S. Bittencourt, MD, PhD, MPH Clifton W. Callaway, MD, FAHA April P. Carson, PhD, MSPH, FAHA Alanna M. Chamberlain, PhD Alexander R. Chang, MD, MS Susan Cheng, MD, MMSc, MPH, FAHA Sandeep R. Das, MD, MPH, MBA, FAHA Francesca N. Delling, MD, MPH Luc Djousse, MD, ScD, MPH Mitchell S.V. Elkind, MD, MS, FAHA Jane F. Ferguson, PhD, FAHA Myriam Fornage, PhD, FAHA Lori Chaffin Jordan, MD, PhD, FAHA Sadiya S. Khan, MD, MSc Brett M. Kissela, MD, MS Kristen L. Knutson, PhD Tak W. Kwan, MD, FAHA Daniel T. Lackland, DrPH, FAHA Tené T. Lewis, PhD Judith H. Lichtman, PhD, MPH, FAHA Chris T. Longenecker, MD Matthew Shane Loop, PhD Pamela L. Lutsey, PhD, MPH, FAHA Seth S. Martin, MD, MHS, FAHA Kunihiro Matsushita, MD, PhD, FAHA Andrew E. Moran, MD, MPH, FAHA Michael E. Mussolino, PhD, FAHA Martin O’Flaherty, MD, MSc, PhD Ambarish Pandey, MD, MSCS Amanda M. Perak, MD, MS Wayne D. Rosamond, PhD, MS, FAHA Gregory A. Roth, MD, MPH, FAHA Uchechukwu K.A. Sampson, MD, MBA, MPH, FAHA Gary M. Satou, MD, FAHA Emily B. Schroeder, MD, PhD, FAHA Svati H. Shah, MD, MHS, FAHA Nicole L. Spartano, PhD Andrew Stokes, PhD David L. Tirschwell, MD, MS, MSc, FAHA Connie W. Tsao, MD, MPH, Vice Chair Elect Mintu P. Turakhia, MD, MAS, FAHA Lisa B. VanWagner, MD, MSc, FAST John T. Wilkins, MD, MS, FAHA Sally S. Wong, PhD, RD, CDN, FAHA Salim S. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee

5,739 citations