scispace - formally typeset
Search or ask a question
Author

Michael R. Krames

Other affiliations: Soitec, Philips, Hewlett-Packard  ...read more
Bio: Michael R. Krames is an academic researcher from Philips Lumileds Lighting Company. The author has contributed to research in topics: Light-emitting diode & Layer (electronics). The author has an hindex of 65, co-authored 321 publications receiving 18448 citations. Previous affiliations of Michael R. Krames include Soitec & Philips.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented and light extraction techniques are reviewed.
Abstract: Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for "warm" white color temperatures (~3000-4000 K) and high color rendering (CRI>80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1times1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs

1,882 citations

Journal ArticleDOI
TL;DR: In this paper, the Auger recombination coefficient in quasi-bulk InxGa1−xN (x∼9%−15%) layers grown on GaN (0001) is measured by a photoluminescence technique.
Abstract: The Auger recombination coefficient in quasi-bulk InxGa1−xN (x∼9%–15%) layers grown on GaN (0001) is measured by a photoluminescence technique. The samples vary in InN composition, thickness, and threading dislocation density. Throughout this sample set, the measured Auger coefficient ranges from 1.4×10−30to2.0×10−30cm6s−1. The authors argue that an Auger coefficient of this magnitude, combined with the high carrier densities reached in blue and green InGaN∕GaN (0001) quantum well light-emitting diodes (LEDs), is the reason why the maximum external quantum efficiency in these devices is observed at very low current densities. Thus, Auger recombination is the primary nonradiative path for carriers at typical LED operating currents and is the reason behind the drop in efficiency with increasing current even under room-temperature (short-pulsed, low-duty-factor) injection conditions.

1,124 citations

Journal ArticleDOI
TL;DR: In this article, the development and demonstration of a highly efficient warm-white all-nitride phosphor-converted light emitting diode (pc-LED) is presented utilizing a GaN based quantum well blue LED and two novel nitrogen containing luminescent materials doped with Eu2+.
Abstract: In the Editor's Choice [1] the development and demonstration of a highly efficient warm-white all-nitride phosphor-converted light emitting diode (pc-LED) is presented utilizing a GaN based quantum well blue LED and two novel nitrogen containing luminescent materials doped with Eu2+. These novel LEDs are superior to both incandescent and fluorescent lamps and may therefore become the next generation of general lighting sources. The cover picture is an artist's view of the 2-pc-LED: On a copper slug and underneath a plastic lens a ‘flip-chip’ is soldered to metal contacts; ‘flip-chip’ meaning the substrate on which the stack of GaN and InGaN layers has been deposited is used as light exit, the (bottom) p-contacts being highly reflective. The color converting phosphors are placed on top of the chip, embedded in silicone. Primary blue as well as color-converted red and green photons are emitted. The first author, Regina Mueller-Mach, manages the Charac-terization Laboratory at Lumileds which runs R&D work on phosphor converted LEDs in close cooperation with Philips Research Laboratories and the Department of Chemistry and Biochemistry of the University of Munich.

576 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a flip-chip light-emitting diodes (FCLEDs) with a large emitting area (∼0.70 mm2) and an optimized contacting scheme allowing high current (200-1000 mA, J∼30-143 A/cm2) operation with low forward voltages.
Abstract: Data are presented on high-power AlGaInN flip-chip light-emitting diodes (FCLEDs). The FCLED is “flipped-over” or inverted compared to conventional AlGaInN light-emitting diodes (LEDs), and light is extracted through the transparent sapphire substrate. This avoids light absorption from the semitransparent metal contact in conventional epitaxial-up designs. The power FCLED has a large emitting area (∼0.70 mm2) and an optimized contacting scheme allowing high current (200–1000 mA, J∼30–143 A/cm2) operation with low forward voltages (∼2.8 V at 200 mA), and therefore higher power conversion (“wall-plug”) efficiencies. The improved extraction efficiency of the FCLED provides 1.6 times more light compared to top-emitting power LEDs and ten times more light than conventional small-area (∼0.07 mm2) LEDs. FCLEDs in the blue wavelength regime (∼435 nm peak) exhibit ∼21% external quantum efficiency and ∼20% wall-plug efficiency at 200 mA and with record light output powers of 400 mW at 1.0 A.

556 citations

Journal ArticleDOI
TL;DR: In this article, the authors determined that Auger recombination is the limiting factor for quantum efficiency for InGaN-GaN (0001) light-emitting diodes (LEDs) at high current density.
Abstract: Auger recombination is determined to be the limiting factor for quantum efficiency for InGaN–GaN (0001) light-emitting diodes (LEDs) at high current density. High-power double-heterostructure (DH) LEDs are grown by metal-organic chemical vapor deposition. By increasing the active layer thickness, DH LEDs can reach a maximum in quantum efficiency at current densities above 200A∕cm2. Encapsulated thin-film flip-chip DH LEDs with peak wavelength of 432nm have an external quantum efficiency of 40% and output power of 2.3W at 2A.

513 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality are discussed, as well as their widespread acceptance as solid-state lighting sources.
Abstract: White organic light-emitting devices (WOLEDs) have advanced over the last twelve years to the extent that these devices are now being considered as efficient solid-state lighting sources. Initially, WOLEDs were targeted towards display applications for use primarily as liquid-crystal display backlights. Now, their power efficiencies have surpassed those of incandescent sources due to improvements in device architectures, synthesis of novel materials, and the incorporation of electrophosphorescent emitters. This review discusses the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality. Hindrances to their widespread acceptance as solid-state lighting sources are also noted.

1,962 citations

Journal ArticleDOI
TL;DR: In this paper, the status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented and light extraction techniques are reviewed.
Abstract: Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for "warm" white color temperatures (~3000-4000 K) and high color rendering (CRI>80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1times1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs

1,882 citations

Journal ArticleDOI
Shi Ye1, F. Xiao1, Y.X. Pan1, Y. Y. Ma1, Qi Zhang1 
TL;DR: In this article, the most recent advances in the synthesis and application of phosphors for white light-emitting diodes (pc-WLEDs) with emphasis specifically on: (a) principles to tune the excitation and emission spectra of the phosphors: prediction according to crystal field theory, and structural chemistry characteristics (e.g. covalence of chemical bonds, electronegativity, and polarization effects of element); (b) pc-W LEDs with phosphors excited by blue-LED chips: phosphor characteristics, structure, and activated ions
Abstract: Phosphor-converted white light-emitting diodes (pc-WLEDs) are emerging as an indispensable solid-state light source for the next generation lighting industry and display systems due to their unique properties including but not limited to energy savings, environment-friendliness, small volume, and long persistence. Until now, major challenges in pc-WLEDs have been to achieve high luminous efficacy, high chromatic stability, brilliant color-rending properties, and price competitiveness against fluorescent lamps, which rely critically on the phosphor properties. A comprehensive understanding of the nature and limitations of phosphors and the factors dominating the general trends in pc-WLEDs is of fundamental importance for advancing technological applications. This report aims to provide the most recent advances in the synthesis and application of phosphors for pc-WLEDs with emphasis specifically on: (a) principles to tune the excitation and emission spectra of phosphors: prediction according to crystal field theory, and structural chemistry characteristics (e.g. covalence of chemical bonds, electronegativity, and polarization effects of element); (b) pc-WLEDs with phosphors excited by blue-LED chips: phosphor characteristics, structure, and activated ions (i.e. Ce 3+ and Eu 2+ ), including YAG:Ce, other garnets, non-garnets, sulfides, and (oxy)nitrides; (c) pc-WLEDs with phosphors excited by near ultraviolet LED chips: single-phased white-emitting phosphors (e.g. Eu 2+ –Mn 2+ activated phosphors), red-green-blue phosphors, energy transfer, and mechanisms involved; and (d) new clues for designing novel high-performance phosphors for pc-WLEDs based on available LED chips. Emphasis shall also be placed on the relationships among crystal structure, luminescence properties, and device performances. In addition, applications, challenges and future advances of pc-WLEDs will be discussed.

1,860 citations

Journal ArticleDOI
TL;DR: More than one-fifth of US electricity is used to power artificial lighting as discussed by the authors and light-emitting diodes based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting.
Abstract: More than one-fifth of US electricity is used to power artificial lighting. Light-emitting diodes based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting.

1,779 citations

Journal ArticleDOI
01 Jan 1977-Nature
TL;DR: Bergh and P.J.Dean as discussed by the authors proposed a light-emitting diode (LEDD) for light-aware Diodes, which was shown to have promising performance.
Abstract: Light-Emitting Diodes. (Monographs in Electrical and Electronic Engineering.) By A. A. Bergh and P. J. Dean. Pp. viii+591. (Clarendon: Oxford; Oxford University: London, 1976.) £22.

1,560 citations