scispace - formally typeset
Search or ask a question
Author

Michael R. Pearlman

Bio: Michael R. Pearlman is an academic researcher from Harvard University. The author has contributed to research in topics: Geodetic datum & Satellite laser ranging. The author has an hindex of 20, co-authored 50 publications receiving 2140 citations. Previous affiliations of Michael R. Pearlman include Smithsonian Astrophysical Observatory.

Papers
More filters
Journal ArticleDOI
TL;DR: The ILRS works with new satellite missions in the design and building of retroreflector targets to maximize data quality and quantity, and science programs to optimize scientific data yield.

791 citations

Book
01 Jan 2009
TL;DR: The Global Geodetic Observing System (GGOS) as discussed by the authors is a global geodetic observing system that aims to serve the needs of an increasingly global society by providing tools and technologies for modern geodesy.
Abstract: The goals, achievements, and tools of modern geodesy.- Understanding a dynamic planet: Earth science requirements for geodesy.- Maintaining a modern society.- Earth observation: Serving the needs of an increasingly global society.- Geodesy: Foundation for exploring the planets, the solar system and beyond.- Integrated scientific and societal user requirements and functional specifications for the GGOS.- The future geodetic reference frame.- The future Global Geodetic Observing System.- Towards GGOS in 2020.- Recommendations.

202 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the three-telescope IOTA interferometer on Mount Hopkins to detect departures from centrosymmetry (i.e., skew) in the emission pattern from YSO disks on the scale of similar to 4 mas, expected from generic "flared disk'' models.
Abstract: Using the three-telescope IOTA interferometer on Mount Hopkins, we report results from the first near-infrared (lambda = 1.65 mu m) closure-phase survey of young stellar objects (YSOs). These closure phases allow us to unambiguously detect departures from centrosymmetry (i.e., skew) in the emission pattern from YSO disks on the scale of similar to 4 mas, expected from generic "flared disk'' models. Six of 14 targets showed small, yet statistically significant nonzero closure phases, with largest values from the young binary system MWC 361-A and the (pre-main-sequence?) Be star HD 45677. Our observations are quite sensitive to the vertical structure of the inner disk, and we confront the predictions of the "puffed-up inner wall'' models of Dullemond, Dominik, & Natta (DDN). Our data support disk models with curved inner rims because the expected emission appears symmetrically distributed around the star over a wide range of inclination angles. In contrast, our results are incompatible with the models possessing vertical inner walls because they predict extreme skewness (i.e., large closure phases) from the near-IR disk emission that is not seen in our data. In addition, we also present the discovery of mysterious H-band "halos'' (similar to 5%-10% of light on scales 0."01-0."50) around a few objects, a preliminary "parametric imaging'' study for HD 45677, and the first astrometric orbit for the young binary MWC 361-A.

173 citations

BookDOI
01 Jan 2009
TL;DR: As the observing system of the IAG, GGOS facilitates a unique and essential combination of roles centering upon advocacy, integration, and international relations as mentioned in this paper, and promotes high-level outcomes such as the realization of the International Terrestrial Reference Frame through developing and maintaining working relationships among a variety of internal and external groups and organizations.
Abstract: As the observing system of the IAG, GGOS facilitates a unique and essential combination of roles centering upon advocacy, integration, and international relations. GGOS also promotes high‐level outcomes, such as the realization of the International Terrestrial Reference Frame through developing and maintaining working relationships among a variety of internal and external groups and organizations.

161 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured nonzero closure phases for about 29% of the AGB stars using the three-telescope Infrared Optical Telescope Array (IOTA) interferometer at near-infrared wavelengths (H band) and with angular resolutions in the range 5-10 mas.
Abstract: We have measured nonzero closure phases for about 29% of our sample of 56 nearby asymptotic giant branch (AGB) stars, using the three-telescope Infrared Optical Telescope Array (IOTA) interferometer at near-infrared wavelengths (H band) and with angular resolutions in the range 5-10 mas. These nonzero closure phases can only be generated by asymmetric brightness distributions of the target stars or their surroundings. We discuss how these results were obtained and how they might be interpreted in terms of structures on or near the target stars. We also report measured angular sizes and hypothesize that most Mira stars would show detectable asymmetry if observed with adequate angular resolution.

89 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present and interpret GPS measurements of crustal motions for the period 1988-1997 at 189 sites extending east-west from the Caucasus mountains to the Adriatic Sea and north-south from the southern edge of the Eurasian plate to the northern edge of Africa.
Abstract: We present and interpret Global Positioning System (GPS) measurements of crustal motions for the period 1988–1997 at 189 sites extending east-west from the Caucasus mountains to the Adriatic Sea and north-south from the southern edge of the Eurasian plate to the northern edge of the African plate. Sites on the northern Arabian platform move 18±2 mm/yr at N25°±5°W relative to Eurasia, less than the NUVEL-1A circuit closure rate (25±1 mm/yr at N21°±7°W). Preliminary motion estimates (1994–1997) for stations located in Egypt on the northeastern part of Africa show northward motion at 5–6±2 mm/yr, also slower than NUVEL-IA estimates (10±1 mm/yr at N2°±4°E). Eastern Turkey is characterized by distributed deformation, while central Turkey is characterized by coherent plate motion (internal deformation of <2 mm/yr) involving westward displacement and counterclockwise rotation of the Anatolian plate. The Anatolian plate is de-coupled from Eurasia along the right-lateral, strike-slip North Anatolian fault (NAF). We derive a best fitting Euler vector for Anatolia-Eurasia motion of 30.7°± 0.8°N, 32.6°± 0.4°E, 1.2°±0.1°/Myr. The Euler vector gives an upper bound for NAF slip rate of 24±1 mm/yr. We determine a preliminary GPS Arabia-Anatolia Euler vector of 32.9°±1.2°N, 40.3°±1.1°E, 0.8°±0.2°/Myr and an upper bound on left-lateral slip on the East Anatolian fault (EAF) of 9±1 mm/yr. The central and southern Aegean is characterized by coherent motion (internal deformation of <2 mm/yr) toward the SW at 30±1 mm/yr relative to Eurasia. Stations in the SE Aegean deviate significantly from the overall motion of the southern Aegean, showing increasing velocities toward the trench and reaching 10±1 mm/yr relative to the southern Aegean as a whole.

1,871 citations

Journal ArticleDOI
TL;DR: ITRF2008 as mentioned in this paper is a refined version of the International Terrestrial Reference Frame based on reprocessed solutions of the four space geodetic techniques: VLBI, SLR, GPS and DORIS, spanning 29, 26, 12.5 and 16 years of observations, respectively.
Abstract: ITRF2008 is a refined version of the International Terrestrial Reference Frame based on reprocessed solutions of the four space geodetic techniques: VLBI, SLR, GPS and DORIS, spanning 29, 26, 12.5 and 16 years of observations, respectively. The input data used in its elaboration are time series (weekly from satellite techniques and 24-h session-wise from VLBI) of station positions and daily Earth Orientation Parameters (EOPs). The ITRF2008 origin is defined in such a way that it has zero translations and translation rates with respect to the mean Earth center of mass, averaged by the SLR time series. Its scale is defined by nullifying the scale factor and its rate with respect to the mean of VLBI and SLR long-term solutions as obtained by stacking their respective time series. The scale agreement between these two technique solutions is estimated to be 1.05 ± 0.13 ppb at epoch 2005.0 and 0.049 ± 0.010 ppb/yr. The ITRF2008 orientation (at epoch 2005.0) and its rate are aligned to the ITRF2005 using 179 stations of high geodetic quality. An estimate of the origin components from ITRF2008 to ITRF2005 (both origins are defined by SLR) indicates differences at epoch 2005.0, namely: −0.5, −0.9 and −4.7 mm along X, Y and Z-axis, respectively. The translation rate differences between the two frames are zero for Y and Z, while we observe an X-translation rate of 0.3 mm/yr. The estimated formal errors of these parameters are 0.2 mm and 0.2 mm/yr, respectively. The high level of origin agreement between ITRF2008 and ITRF2005 is an indication of an imprecise ITRF2000 origin that exhibits a Z-translation drift of 1.8 mm/yr with respect to ITRF2005. An evaluation of the ITRF2008 origin accuracy based on the level of its agreement with ITRF2005 is believed to be at the level of 1 cm over the time-span of the SLR observations. Considering the level of scale consistency between VLBI and SLR, the ITRF2008 scale accuracy is evaluated to be at the level of 1.2 ppb (8 mm at the equator) over the common time-span of the observations of both techniques. Although the performance of the ITRF2008 is demonstrated to be higher than ITRF2005, future ITRF improvement resides in improving the consistency between local ties in co-location sites and space geodesy estimates.

1,183 citations

Journal ArticleDOI
TL;DR: Altamimi et al. as mentioned in this paper used time series of station positions and daily Earth Orientation Parameters (EOPs) of the International Terrestrial Reference Frame (ITRF) to monitor station nonlinear motion and discontinuities and examine the temporal behavior of the frame physical parameters, namely the origin and the scale.
Abstract: [1] Unlike the past International Terrestrial Reference Frame (ITRF) versions where global long-term solutions were combined, the ITRF2005 uses as input data time series (weekly from satellite techniques and 24-h session-wise from Very Long Baseline Interferometry) of station positions and daily Earth Orientation Parameters (EOPs). The advantage of using time series of station positions is that it allows to monitor station non-linear motion and discontinuities and to examine the temporal behavior of the frame physical parameters, namely the origin and the scale. The ITRF2005 origin is defined in such a way that it has zero translations and translation rates with respect to the Earth center of mass, averaged by the Satellite Laser Ranging (SLR) time series spanning 13 years of observations. Its scale is defined by nullifying the scale and its rate with respect to the Very Long Baseline Interferometry (VLBI) time series spanning 26 years of observations. The ITRF2005 orientation (at epoch 2000.0) and its rate are aligned to the ITRF2000 using 70 stations of high geodetic quality. The estimated level of consistency of the ITRF2005 origin (at epoch 2000.0) and its rate with respect to the ITRF2000 is respectively 0.1, 0.8, 5.8 mm and 0.2, 0.1, 1.8 mm/yr along the X, Yand Z-axis. We estimate the formal errors on these components to be 0.3 mm and 0.3 mm/yr. We believe that this low level of agreement between the two frame origins is most probably due to the poor SLR network geometry and its degradation over time. The ITRF2005 combination involving 84 co-location sites revealed a scale inconsistency of 1 ppb (6.3 mm at the equator), at epoch 2000.0, and 0.08 ppb/yr between the SLR and VLBI long-term solutions as obtained by the stacking of their respective time series. Possible causes of this inconsistency may include the poor SLR and VLBI networks and their co-locations, local tie uncertainties, systematic effects and possible inconsistent model corrections used in the data analysis of both techniques. For the first time of the ITRF history, the ITRF2005 rigorous combination provides self-consistent series of EOPs, including Polar Motion from VLBI and satellite techniques and Universal Time and Length of Day from VLBI only. A velocity field of 152 sites with an error less than 1.5 mm/yr is used to estimate absolute rotation poles of 15 tectonic plates that are consistent with the ITRF2005 frame. This new absolute plate motion model supersedes and significantly improves that of the ITRF2000 which involved six major tectonic plates. Citation: Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher (2007), ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112, B09401,

956 citations

Journal ArticleDOI
TL;DR: The ITRF2014 is generated with an enhanced modeling of nonlinear station motions, including seasonal (annual and semiannual) signals of station positions and postseismic deformation for sites that were subject to major earthquakes.
Abstract: For the first time in the International Terrestrial Reference Frame (ITRF) history, the ITRF2014 is generated with an enhanced modeling of nonlinear station motions, including seasonal (annual and semiannual) signals of station positions and postseismic deformation for sites that were subject to major earthquakes. Using the full observation history of the four space geodetic techniques (very long baseline interferometry (VLBI), satellite laser ranging (SLR), Global Navigation Satellite Systems (GNSS), and Doppler orbitography and radiopositioning integrated by satellite (DORIS)), the corresponding international services provided reprocessed time series (weekly from SLR and DORIS, daily from GNSS, and 24 h session-wise from VLBI) of station positions and daily Earth Orientation Parameters. ITRF2014 is demonstrated to be superior to past ITRF releases, as it precisely models the actual station trajectories leading to a more robust secular frame and site velocities. The ITRF2014 long-term origin coincides with the Earth system center of mass as sensed by SLR observations collected on the two LAGEOS satellites over the time span between 1993.0 and 2015.0. The estimated accuracy of the ITRF2014 origin, as reflected by the level of agreement with the ITRF2008 (both origins are defined by SLR), is at the level of less than 3 mm at epoch 2010.0 and less than 0.2 mm/yr in time evolution. The ITRF2014 scale is defined by the arithmetic average of the implicit scales of SLR and VLBI solutions as obtained by the stacking of their respective time series. The resulting scale and scale rate differences between the two solutions are 1.37 (±0.10) ppb at epoch 2010.0 and 0.02 (±0.02) ppb/yr. While the postseismic deformation models were estimated using GNSS/GPS data, the resulting parametric models at earthquake colocation sites were applied to the station position time series of the three other techniques, showing a very high level of consistency which enforces more the link between techniques within the ITRF2014 frame. The users should be aware that the postseismic deformation models are part of the ITRF2014 products, unlike the annual and semiannual signals, which were estimated internally with the only purpose of enhancing the velocity field estimation of the secular frame.

925 citations

Journal ArticleDOI
TL;DR: In this article, the authors study a space of coherent risk measures M/ obtained as certain expansions of coherent elementary basis measures and give necessary and sufficient conditions on / for M/ to be a coherent measure.
Abstract: We study a space of coherent risk measures M/ obtained as certain expansions of coherent elementary basis measures. In this space, the concept of ‘‘risk aversion function’’ / naturally arises as the spectral representation of each risk measure in a space of functions of confidence level probabilities. We give necessary and sufficient conditions on / for M/ to be a coherent measure. We find in this way a simple interpretation of the concept of coherence and a way to map any rational investor’s subjective risk aversion onto a coherent measure and vice-versa. We also provide for these measures their discrete versions M ðNÞ / acting on finite sets of N independent realizations of a r.v. which are not only shown to be coherent measures for any fixed N, but also consistent estimators of M/ for large N. 2002 Elsevier Science B.V. All rights reserved.

799 citations