scispace - formally typeset
Search or ask a question
Author

Michael Ratz

Bio: Michael Ratz is an academic researcher from Technische Universität München. The author has contributed to research in topics: Supersymmetry & Minimal Supersymmetric Standard Model. The author has an hindex of 40, co-authored 74 publications receiving 7045 citations. Previous affiliations of Michael Ratz include Kavli Institute for Theoretical Physics & University of Bonn.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of neutrino mass physics can be found in this paper, where the authors summarize what can be learned about neutrinos interactions as well as the nature of new physics beyond the Standard Model from various proposed Neutrino experiments.
Abstract: This paper is a review of the present status of neutrino mass physics, which grew out of an APS sponsored study of neutrinos in 2004. After a discussion of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, it summarizes what can be learned about neutrino interactions as well as the nature of new physics beyond the Standard Model from the various proposed neutrino experiments. The intriguing possibility that neutrino mass physics may be at the heart of our understanding of a long standing puzzle of cosmology, i.e. the origin of matter?antimatter asymmetry is also discussed.

496 citations

Journal ArticleDOI
Georg Weiglein1, Sami Lehti2, Geneviève Bélanger, Tao Han3, David L. Rainwater4, Massimiliano Chiorboli5, Michael Ratz, M. Schumacher6, P. Niezurawski7, Stefano Moretti8, Filip Moortgat9, S. J. Asztalos10, Rohini M. Godbole11, Abdelhak Djouadi12, G. Polesello9, Werner Porod13, Werner Porod14, A.A. Giolo-Nicollerat15, Alessia Tricomi5, J.L. Hewett16, M. Szleper17, L. Zivkovic18, Stephen Godfrey19, Maria Krawczyk7, Klaus Desch20, Alexander Sherstnev21, Dimitri Bourilkov22, A. G. Akeroyd, Dirk Zerwas, M. Muhlleitner23, T. Binoth24, Maria Spiropulu9, Alexander Nikitenko25, A. Krokhotine, V. Bunichev21, Tadas Krupovnickas26, Peter Wienemann, T. Hurth9, T. Hurth16, A. De Roeck9, S. De Curtis27, Ritva Kinnunen2, D. Grellscheid28, U. Baur29, J. Kalinowski7, Gudrid Moortgat-Pick1, Gudrid Moortgat-Pick9, H. U. Martyn30, Alexander Pukhov21, C. Hugonie13, U. Ellwanger, Daniel Tovey31, Aleksander Filip Zarnecki7, Thomas G. Rizzo16, S. Slabospitsky, Jonathan L. Feng32, Remi Lafaye33, Sally Dawson34, Diaz23, Philip Bechtle20, I.F. Ginzburg, Hooman Davoudiasl, Andreas Redelbach24, J. Jiang35, W. J. Stirling1, Reinhold Rückl24, Per Osland36, S. Weinzierl37, Fernando Quevedo38, Laura Reina26, Timothy Barklow16, H. J. Schreiber, Andre Sopczak39, Wilfried Buchmuller, Howard E. Haber40, H. Pas24, E. Lytken41, Xerxes Tata, Howard Baer26, Tsutomu T. Yanagida42, Sabine Kraml9, Sabine Kraml43, Mayda Velasco17, Francois Richard, E. K. U. Gross6, A.F. Osorio44, J. Guasch23, Fawzi Boudjema, Stewart Boogert45, Sven Heinemeyer9, Sabine Riemann, D. Asner18, Daniele Dominici27, Victoria Jane Martin46, J.F. Gunion47, Marco Battaglia48, Michael Spira23, Doreen Wackeroth29, David J. Miller46, David J. Miller49, Joan Sola50, J. Gronberg10, Zack Sullivan, A. Juste, Lynne H. Orr4, Wolfgang Hollik51, Heather E. Logan3, Benjamin C. Allanach38, Junji Hisano42, Carlos E. M. Wagner52, Carlos E. M. Wagner35, Frank F. Deppisch24, Tilman Plehn9, F. Gianotti9, Gianluca Cerminara53, G.A. Blair54, Wolfgang Kilian, Michael Dittmar15, E. E. Boos21, Kiyotomo Kawagoe55, Alexander Belyaev26, Koichi Hamaguchi, Børge Kile Gjelsten56, Tim M. P. Tait, Klaus Mönig, Edmond L. Berger35, P.M. Zerwas, Mihoko M. Nojiri57 
Durham University1, University of Helsinki2, University of Wisconsin-Madison3, University of Rochester4, University of Catania5, Weizmann Institute of Science6, University of Warsaw7, University of Southampton8, CERN9, Lawrence Livermore National Laboratory10, Indian Institute of Science11, University of Montpellier12, Spanish National Research Council13, University of Zurich14, ETH Zurich15, Stanford University16, Northwestern University17, University of Pittsburgh18, Carleton University19, University of Hamburg20, Moscow State University21, University of Florida22, Paul Scherrer Institute23, University of Würzburg24, Imperial College London25, Florida State University26, University of Florence27, University of Bonn28, University at Buffalo29, RWTH Aachen University30, University of Sheffield31, University of California, Irvine32, Laboratoire d'Annecy-le-Vieux de physique des particules33, Brookhaven National Laboratory34, Argonne National Laboratory35, University of Bergen36, University of Mainz37, Centers for Medicare and Medicaid Services38, Lancaster University39, University of California, Santa Cruz40, University of Copenhagen41, University of Tokyo42, Austrian Academy of Sciences43, University of Manchester44, University College London45, University of Edinburgh46, University of California, Davis47, University of California, Berkeley48, University of Glasgow49, University of Barcelona50, Max Planck Society51, University of Chicago52, University of Turin53, Royal Holloway, University of London54, Kobe University55, University of Oslo56, Kyoto University57
TL;DR: In this paper, the authors discuss the possible interplay between the Large Hadron Collider (LHC) and the International e(+)e(-) Linear Collider (ILC) in testing the Standard Model and in discovering and determining the origin of new physics.

422 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore a "fertile patch" of the heterotic landscape based on a 6-II orbifold with SO(10) and E6 local GUT structures.

391 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived simple analytical formulae for the renormalization group running of neutrino masses, leptonic mixing angles and CP phases, which allow an easy understanding of the running.

339 citations

Journal ArticleDOI
Georg Weiglein, Timothy Barklow, E. E. Boos, A. De Roeck, Klaus Kurt Desch, F. Gianotti, Rohini M. Godbole, J.F. Gunion, Howard E. Haber, S. Heinemeyer, J.L. Hewett, Kiyotomo Kawagoe, Klaus Mönig, Mihoko M. Nojiri, G. Polesello, Francois Richard, Sabine Riemann, W. J. Stirling, A. G. Akeroyd, Benjamin C. Allanach, D. M. Asner, S. J. Asztalos, Howard Baer, M. Battaglia, U. Baur, Philip Bechtle, Geneviève Bélanger, Alexander Belyaev, Edmond L. Berger, T. Binoth, G.A. Blair, Stewart Boogert, Fawzi Boudjema, Dimitri Bourilkov, Wilfried Buchmuller, V. Bunichev, Gianluca Cerminara, Massimiliano Chiorboli, Hooman Davoudiasl, Sally Dawson, S. De Curtis, Frank F. Deppisch, Marco Aurelio Diaz, Michael Dittmar, Abdelhak Djouadi, Daniele Dominici, U. Ellwanger, Jonathan L. Feng, I.F. Ginzburg, A. S. Giolo-Nicollerat, Børge Kile Gjelsten, Stephen Godfrey, David Grellscheid, J. Gronberg, Eugene P. Gross, J. Guasch, Koichi Hamaguchi, Tao Han, Junji Hisano, Wolfgang Hollik, Cyril Hugonie, Tobias Hurth, J. Jiang, A. Juste, J. Kalinowski, Wolfgang Kilian, Ritva Kinnunen, Sabine Kraml, Maria Krawczyk, A. Krokhotine, T. Krupovnickas, Remi Lafaye, Sami Lehti, Heather E. Logan, Else Lytken, Victoria Jane Martin, H.U. Martyn, David J. Miller, Stefano Moretti, F. Moortgat, Gudrid Moortgat-Pick, M. Muhlleitner, P. Niezurawski, Alexander Nikitenko, Lynne H. Orr, Per Osland, A.F. Osorio, H. Pas, Tilman Plehn, Werner Porod, Alexander Pukhov, Fernando Quevedo, D. Rainwater, Michael Ratz, Andreas Redelbach, Laura Reina, Tom Rizzo, Reinhold Rückl, H. J. Schreiber, Markus Schumacher, Alexander Sherstnev, S. Slabospitsky, Joan Sola, Andre Sopczak, Michael Spira, Maria Spiropulu, Zack Sullivan, Michal Szleper, Tim M. P. Tait, Xerxes Tata, Daniel Tovey, Alessia Tricomi, Mayda Velasco, Doreen Wackeroth, Carlos E. M. Wagner, S. Weinzierl, Peter Wienemann, Tsutomu T. Yanagida, Aleksander Filip Zarnecki, Dirk Zerwas, P.M. Zerwas, L. Zivkovic 
TL;DR: In this article, the authors address the possible interplay between the Large Hadron Collider (LHC) and the International e+e- Linear Collider (ILC) in testing the Standard Model and in discovering and determining the origin of new physics.
Abstract: Physics at the Large Hadron Collider (LHC) and the International e+e- Linear Collider (ILC) will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Topics under study comprise the physics of weak and strong electroweak symmetry breaking, supersymmetric models, new gauge theories, models with extra dimensions, and electroweak and QCD precision physics. The status of the work that has been carried out within the LHC / LC Study Group so far is summarised in this report. Possible topics for future studies are outlined.

334 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of recent work on modified theories of gravity and their cosmological consequences can be found in this article, where the authors provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a selfcontained, comprehensive and up-to-date introduction to the subject as a whole.

3,674 citations

01 Jun 2005

3,154 citations

01 Apr 2003
TL;DR: In this paper, the authors measured the flux of neutrino from distant nuclear reactors and found fewer nu;(e) events than expected from standard assumptions about nu; (e) propagation at the 99.95% C.L.yr exposure.
Abstract: KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.

1,659 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present cosmological constraints from the Wilkinson Microwave Anisotropy Probe (WMAP) alone for both the ACDM model and a set of possible extensions.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP), launched in 2001, has mapped out the Cosmic Microwave Background with unprecedented accuracy over the whole sky. Its observations have led to the establishment of a simple concordance cosmological model for the contents and evolution of the universe, consistent with virtually all other astronomical measurements. The WMAP first-year and three-year data have allowed us to place strong constraints on the parameters describing the ACDM model. a flat universe filled with baryons, cold dark matter, neutrinos. and a cosmological constant. with initial fluctuations described by nearly scale-invariant power law fluctuations, as well as placing limits on extensions to this simple model (Spergel et al. 2003. 2007). With all-sky measurements of the polarization anisotropy (Kogut et al. 2003; Page et al. 2007), two orders of magnitude smaller than the intensity fluctuations. WMAP has not only given us an additional picture of the universe as it transitioned from ionized to neutral at redshift z approx.1100. but also an observation of the later reionization of the universe by the first stars. In this paper we present cosmological constraints from WMAP alone. for both the ACDM model and a set of possible extensions. We also consider tlle consistency of WMAP constraints with other recent astronomical observations. This is one of seven five-year WMAP papers. Hinshaw et al. (2008) describe the data processing and basic results. Hill et al. (2008) present new beam models arid window functions, Gold et al. (2008) describe the emission from Galactic foregrounds, and Wright et al. (2008) the emission from extra-Galactic point sources. The angular power spectra are described in Nolta et al. (2008), and Komatsu et al. (2008) present and interpret cosmological constraints based on combining WMAP with other data. WMAP observations are used to produce full-sky maps of the CMB in five frequency bands centered at 23, 33, 41, 61, and 94 GHz (Hinshaw et al. 2008). With five years of data, we are now able to place better limits on the ACDM model. as well as to move beyond it to test the composition of the universe. details of reionization. sub-dominant components, characteristics of inflation, and primordial fluctuations. We have more than doubled the amount of polarized data used for cosmological analysis. allowing a better measure of the large-scale E-mode signal (Nolta et al. 2008). To this end we describe an alternative way to remove Galactic foregrounds from low resolution polarization maps in which Galactic emission is marginalized over, providing a cross-check of our results. With longer integration we also better probe the second and third acoustic peaks in the temperature angular power spectrum, and have many more year-to-year difference maps available for cross-checking systematic effects (Hinshaw et al. 2008).

1,600 citations