scispace - formally typeset
Search or ask a question
Author

Michael S. Bernstein

Bio: Michael S. Bernstein is an academic researcher from Stanford University. The author has contributed to research in topics: Crowdsourcing & Computer science. The author has an hindex of 52, co-authored 191 publications receiving 42744 citations. Previous affiliations of Michael S. Bernstein include Association for Computing Machinery & Massachusetts Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
06 May 2021
TL;DR: In this paper, disagreement deconvolution takes in any multi-annotator (e.g., crowdsourced) dataset, disentangles stable opinions from noise by estimating intra-annotators consistency.
Abstract: Machine learning classifiers for human-facing tasks such as comment toxicity and misinformation often score highly on metrics such as ROC AUC but are received poorly in practice. Why this gap? Today, metrics such as ROC AUC, precision, and recall are used to measure technical performance; however, human-computer interaction observes that evaluation of human-facing systems should account for people’s reactions to the system. In this paper, we introduce a transformation that more closely aligns machine learning classification metrics with the values and methods of user-facing performance measures. The disagreement deconvolution takes in any multi-annotator (e.g., crowdsourced) dataset, disentangles stable opinions from noise by estimating intra-annotator consistency, and compares each test set prediction to the individual stable opinions from each annotator. Applying the disagreement deconvolution to existing social computing datasets, we find that current metrics dramatically overstate the performance of many human-facing machine learning tasks: for example, performance on a comment toxicity task is corrected from .95 to .73 ROC AUC.

74 citations

Proceedings Article
06 Sep 2019
TL;DR: This work establishes a gold standard human benchmark for generative realism by constructing Human eYe Perceptual Evaluation (HYPE), a human benchmark that is grounded in psychophysics research in perception, reliable across different sets of randomly sampled outputs from a model, able to produce separable model performances, and efficient in cost and time.
Abstract: Generative models often use human evaluations to measure the perceived quality of their outputs. Automated metrics are noisy indirect proxies, because they rely on heuristics or pretrained embeddings. However, up until now, direct human evaluation strategies have been ad-hoc, neither standardized nor validated. Our work establishes a gold standard human benchmark for generative realism. We construct Human eYe Perceptual Evaluation (HYPE) a human benchmark that is (1) grounded in psychophysics research in perception, (2) reliable across different sets of randomly sampled outputs from a model, (3) able to produce separable model performances, and (4) efficient in cost and time. We introduce two variants: one that measures visual perception under adaptive time constraints to determine the threshold at which a model's outputs appear real (e.g. $250$ms), and the other a less expensive variant that measures human error rate on fake and real images sans time constraints. We test HYPE across six state-of-the-art generative adversarial networks and two sampling techniques on conditional and unconditional image generation using four datasets: CelebA, FFHQ, CIFAR-10, and ImageNet. We find that HYPE can track model improvements across training epochs, and we confirm via bootstrap sampling that HYPE rankings are consistent and replicable.

72 citations

Proceedings Article
28 Oct 2019
TL;DR: Fair Work is introduced, enabling requesters to automatically pay their workers minimum wage by adding a one-line script tag to their task HTML on Amazon Mechanical Turk, and aims to lower the threshold for pro-social work practices in microtask marketplaces.
Abstract: Accurate task pricing in microtask marketplaces requires substantial effort via trial and error, contributing to a pattern of worker underpayment. In response, we introduce Fair Work, enabling requesters to automatically pay their workers minimum wage by adding a one-line script tag to their task HTML on Amazon Mechanical Turk. Fair Work automatically surveys workers to find out how long the task takes, then aggregates those self-reports and auto-bonuses workers up to a minimum wage if needed. Evaluations demonstrate that the system estimates payments more accurately than requesters and that worker time surveys are close to behaviorally observed time measurements. With this work, we aim to lower the threshold for pro-social work practices in microtask marketplaces.

71 citations

Proceedings ArticleDOI
07 May 2016
TL;DR: Atelier, a micro-internship platform that connects crowd interns with crowd mentors, guides mentor-intern pairs to break down expert crowdsourcing tasks into milestones, review intermediate output, and problem-solve together, finding that Atelier helped interns maintain forward progress and absorb best practices.
Abstract: Expert crowdsourcing marketplaces have untapped potential to empower workers' career and skill development. Currently, many workers cannot afford to invest the time and sacrifice the earnings required to learn a new skill, and a lack of experience makes it difficult to get job offers even if they do. In this paper, we seek to lower the threshold to skill development by repurposing existing tasks on the marketplace as mentored, paid, real-world work experiences, which we refer to as micro-internships. We instantiate this idea in Atelier, a micro-internship platform that connects crowd interns with crowd mentors. Atelier guides mentor-intern pairs to break down expert crowdsourcing tasks into milestones, review intermediate output, and problem-solve together. We conducted a field experiment comparing Atelier's mentorship model to a non-mentored alternative on a real-world programming crowdsourcing task, finding that Atelier helped interns maintain forward progress and absorb best practices.

69 citations

Journal ArticleDOI
TL;DR: In this paper , the authors describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior.
Abstract: Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

69 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations