scispace - formally typeset
Search or ask a question
Author

Michael S. Bernstein

Bio: Michael S. Bernstein is an academic researcher from Stanford University. The author has contributed to research in topics: Crowdsourcing & Computer science. The author has an hindex of 52, co-authored 191 publications receiving 42744 citations. Previous affiliations of Michael S. Bernstein include Association for Computing Machinery & Massachusetts Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
27 Mar 2019
TL;DR: It is argued that a good question is one that has a tightly focused purpose --- one that is aimed at expecting a specific type of response, and a model is built that maximizes mutual information between the image, the expected answer and the generated question.
Abstract: Though image-to-sequence generation models have become overwhelmingly popular in human-computer communications, they suffer from strongly favoring safe generic questions (``What is in this picture?''). Generating uninformative but relevant questions is not sufficient or useful. We argue that a good question is one that has a tightly focused purpose --- one that is aimed at expecting a specific type of response. We build a model that maximizes mutual information between the image, the expected answer and the generated question. To overcome the non-differentiability of discrete natural language tokens, we introduce a variational continuous latent space onto which the expected answers project. We regularize this latent space with a second latent space that ensures clustering of similar answers. Even when we don't know the expected answer, this second latent space can generate goal-driven questions specifically aimed at extracting objects (``what is the person throwing''), attributes, (``What kind of shirt is the person wearing?''), color (``what color is the frisbee?''), material (``What material is the frisbee?''), etc. We quantitatively show that our model is able to retain information about an expected answer category, resulting in more diverse, goal-driven questions. We launch our model on a set of real world images and extract previously unseen visual concepts.

48 citations

Proceedings ArticleDOI
20 Oct 2017
TL;DR: Crowd Research is presented, a crowdsourcing technique that coordinates open-ended research through an iterative cycle of open contribution, synchronous collaboration, and peer assessment, and introduces a decentralized credit system.
Abstract: Research experiences today are limited to a privileged few at select universities. Providing open access to research experiences would enable global upward mobility and increased diversity in the scientific workforce. How can we coordinate a crowd of diverse volunteers on open-ended research? How could a PI have enough visibility into each person's contributions to recommend them for further study? We present Crowd Research, a crowdsourcing technique that coordinates open-ended research through an iterative cycle of open contribution, synchronous collaboration, and peer assessment. To aid upward mobility and recognize contributions in publications, we introduce a decentralized credit system: participants allocate credits to each other, which a graph centrality algorithm translates into a collectively-created author order. Over 1,500 people from 62 countries have participated, 74% from institutions with low access to research. Over two years and three projects, this crowd has produced articles at top-tier Computer Science venues, and participants have gone on to leading graduate programs.

48 citations

Proceedings ArticleDOI
07 May 2011
TL;DR: This panel will address the issues surrounding replication in the community, and discuss: a) how much of their broad diverse discipline is 'science', b) how, if at all, the authors currently see replication of research in this community, c) whether they should place more emphasis on replication in some form, and d) how that should look in their community.
Abstract: The replication of research findings is a cornerstone of good science. Replication confirms results, strengthens research, and makes sure progress is based on solid foundations. CHI, however, rewards novelty and is focused on new results. As a community, therefore, we do not value, facilitate, or reward replication in research, and often take the significant results of a single user study on 20 users to be true. This panel will address the issues surrounding replication in our community, and discuss: a) how much of our broad diverse discipline is 'science', b) how, if at all, we currently see replication of research in our community, c) whether we should place more emphasis on replication in some form, and d) how that should look in our community. The aim of the panel is to make a proposal to future CHI organizers (2 are on the panel) for how we should facilitate replication in the future.

48 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: This paper proposed a semi-supervised method that assigns probabilistic relationship labels to a large number of unlabeled images using few labeled examples, whose outputs are aggregated using a factor graph-based generative model.
Abstract: Visual knowledge bases such as Visual Genome power numerous applications in computer vision, including visual question answering and captioning, but suffer from sparse, incomplete relationships. All scene graph models to date are limited to training on a small set of visual relationships that have thousands of training labels each. Hiring human annotators is expensive, and using textual knowledge base completion methods are incompatible with visual data. In this paper, we introduce a semi-supervised method that assigns probabilistic relationship labels to a large number of unlabeled images using few labeled examples. We analyze visual relationships to suggest two types of image-agnostic features that are used to generate noisy heuristics, whose outputs are aggregated using a factor graph-based generative model. With as few as 10 labeled examples per relationship, the generative model creates enough training data to train any existing state-of-the-art scene graph model. We demonstrate that our method outperforms all baseline approaches on scene graph prediction by5.16 recall@100 for PREDCLS. In our limited label setting, we define a complexity metric for relationships that serves as an indicator (R^2 = 0.778) for conditions under which our method succeeds over transfer learning, the de-facto approach for training with limited labels.

47 citations

Posted Content
TL;DR: The authors proposed an iterative model that localizes the two entities in the referring relationship, conditioned on one another, and formulated the cyclic condition between the entities in a relationship by modelling predicates that connect the entities as shifts in attention from one entity to another.
Abstract: Images are not simply sets of objects: each image represents a web of interconnected relationships. These relationships between entities carry semantic meaning and help a viewer differentiate between instances of an entity. For example, in an image of a soccer match, there may be multiple persons present, but each participates in different relationships: one is kicking the ball, and the other is guarding the goal. In this paper, we formulate the task of utilizing these "referring relationships" to disambiguate between entities of the same category. We introduce an iterative model that localizes the two entities in the referring relationship, conditioned on one another. We formulate the cyclic condition between the entities in a relationship by modelling predicates that connect the entities as shifts in attention from one entity to another. We demonstrate that our model can not only outperform existing approaches on three datasets --- CLEVR, VRD and Visual Genome --- but also that it produces visually meaningful predicate shifts, as an instance of interpretable neural networks. Finally, we show that by modelling predicates as attention shifts, we can even localize entities in the absence of their category, allowing our model to find completely unseen categories.

45 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations