scispace - formally typeset
Search or ask a question
Author

Michael S. Bernstein

Bio: Michael S. Bernstein is an academic researcher from Stanford University. The author has contributed to research in topics: Crowdsourcing & Computer science. The author has an hindex of 52, co-authored 191 publications receiving 42744 citations. Previous affiliations of Michael S. Bernstein include Association for Computing Machinery & Massachusetts Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
25 Feb 2017
TL;DR: It is found that, contrary to these claims, workers are extremely stable in their quality over the entire period, and it is demonstrated that it is possible to predict workers' long-term quality using just a glimpse of their quality on the first five tasks.
Abstract: Microtask crowdsourcing is increasingly critical to the creation of extremely large datasets. As a result, crowd workers spend weeks or months repeating the exact same tasks, making it necessary to understand their behavior over these long periods of time. We utilize three large, longitudinal datasets of nine million annotations collected from Amazon Mechanical Turk to examine claims that workers fatigue or satisfice over these long periods, producing lower quality work. We find that, contrary to these claims, workers are extremely stable in their quality over the entire period. To understand whether workers set their quality based on the task's requirements for acceptance, we then perform an experiment where we vary the required quality for a large crowdsourcing task. Workers did not adjust their quality based on the acceptance threshold: workers who were above the threshold continued working at their usual quality level, and workers below the threshold self-selected themselves out of the task. Capitalizing on this consistency, we demonstrate that it is possible to predict workers' long-term quality using just a glimpse of their quality on the first five tasks.

36 citations

Proceedings Article
29 Mar 2016
TL;DR: A technique that combines natural language processing with a crowdsourced lexicon of stereotypes to capture gender biases in fiction finds that male over-representation and traditional gender stereotypes are common throughout nearly every genre in the corpus.
Abstract: Imagine a princess asleep in a castle, waiting for her prince to slay the dragon and rescue her. Tales like the famous Sleeping Beauty clearly divide up gender roles. But what about more modern stories, borne of a generation increasingly aware of social constructs like sexism and racism? Do these stories tend to reinforce gender stereotypes, or counter them? In this paper, we present a technique that combines natural language processing with a crowdsourced lexicon of stereotypes to capture gender biases in fiction. We apply this technique across 1.8 billion words of fiction from the Wattpad online writing community, investigating gender representation in stories, how male and female characters behave and are described, and how authors' use of gender stereotypes is associated with the community's ratings. We find that male over-representation and traditional gender stereotypes (e.g., dominant men and submissive women) are common throughout nearly every genre in our corpus. However, only some of these stereotypes, like sexual or violent men, are associated with highly rated stories. Finally, despite women often being the target of negative stereotypes, female authors are equally likely to write such stereotypes as men.

35 citations

Proceedings ArticleDOI
19 Oct 2008
TL;DR: Inky is an example of a new kind of hybrid between a command line and a GUI interface, which aims to capture the efficiency benefits of typed commands while mitigating their usability problems.
Abstract: We present Inky, a command line for shortcut access to common web tasks. Inky aims to capture the efficiency benefits of typed commands while mitigating their usability problems. Inky commands have little or no new syntax to learn, and the system displays rich visual feedback while the user is typing, including missing parameters and contextual information automatically clipped from the target web site. Inky is an example of a new kind of hybrid between a command line and a GUI interface. We describe the design and implementation of two prototypes of this idea, and report the results of a preliminary user study.

35 citations

Proceedings ArticleDOI
15 Feb 2014
TL;DR: In a multi-month field deployment, Catalyst helped users organize events including food bank volunteering, on-demand study groups, and mass participation events like a human chess game, suggesting that activation thresholds can indeed catalyze a large class of new collective efforts.
Abstract: The web is a catalyst for drawing people together around shared goals, but many groups never reach critical mass. It can thus be risky to commit time or effort to a goal: participants show up only to discover that nobody else did, and organizers devote significant effort to causes that never get off the ground. Crowdfunding has lessened some of this risk by only calling in donations when an effort reaches a collective monetary goal. However, it leaves unsolved the harder problem of mobilizing effort, time and participation. We generalize the concept into activation thresholds, commitments that are conditioned on others' participation. With activation thresholds, supporters only need to show up for an event if enough other people commit as well. Catalyst is a platform that introduces activation thresholds for on-demand events. For more complex coordination needs, Catalyst also provides thresholds based on time or role (e.g., a bake sale requiring commitments for bakers, decorators, and sellers). In a multi-month field deployment, Catalyst helped users organize events including food bank volunteering, on-demand study groups, and mass participation events like a human chess game. Our results suggest that activation thresholds can indeed catalyze a large class of new collective efforts.

35 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations