scispace - formally typeset
Search or ask a question
Author

Michael S. Bernstein

Bio: Michael S. Bernstein is an academic researcher from Stanford University. The author has contributed to research in topics: Crowdsourcing & Computer science. The author has an hindex of 52, co-authored 191 publications receiving 42744 citations. Previous affiliations of Michael S. Bernstein include Association for Computing Machinery & Massachusetts Institute of Technology.


Papers
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: In this article, the authors propose a model that uses this insight to train visual models for objects and predicates individually and later combines them together to predict multiple relationships per image and localize the objects in the predicted relationships as bounding boxes in the image.
Abstract: Visual relationships capture a wide variety of interactions between pairs of objects in images (e.g. “man riding bicycle” and “man pushing bicycle”). Consequently, the set of possible relationships is extremely large and it is difficult to obtain sufficient training examples for all possible relationships. Because of this limitation, previous work on visual relationship detection has concentrated on predicting only a handful of relationships. Though most relationships are infrequent, their objects (e.g. “man” and “bicycle”) and predicates (e.g. “riding” and “pushing”) independently occur more frequently. We propose a model that uses this insight to train visual models for objects and predicates individually and later combines them together to predict multiple relationships per image. We improve on prior work by leveraging language priors from semantic word embeddings to finetune the likelihood of a predicted relationship. Our model can scale to predict thousands of types of relationships from a few examples. Additionally, we localize the objects in the predicted relationships as bounding boxes in the image. We further demonstrate that understanding relationships can improve content based image retrieval.

893 citations

Proceedings ArticleDOI
23 Feb 2013
TL;DR: This paper outlines a framework that will enable crowd work that is complex, collaborative, and sustainable, and lays out research challenges in twelve major areas: workflow, task assignment, hierarchy, real-time response, synchronous collaboration, quality control, crowds guiding AIs, AIs guiding crowds, platforms, job design, reputation, and motivation.
Abstract: Paid crowd work offers remarkable opportunities for improving productivity, social mobility, and the global economy by engaging a geographically distributed workforce to complete complex tasks on demand and at scale. But it is also possible that crowd work will fail to achieve its potential, focusing on assembly-line piecework. Can we foresee a future crowd workplace in which we would want our children to participate? This paper frames the major challenges that stand in the way of this goal. Drawing on theory from organizational behavior and distributed computing, as well as direct feedback from workers, we outline a framework that will enable crowd work that is complex, collaborative, and sustainable. The framework lays out research challenges in twelve major areas: workflow, task assignment, hierarchy, real-time response, synchronous collaboration, quality control, crowds guiding AIs, AIs guiding crowds, platforms, job design, reputation, and motivation.

836 citations

Proceedings ArticleDOI
03 Oct 2010
TL;DR: S soylent, a word processing interface that enables writers to call on Mechanical Turk workers to shorten, proofread, and otherwise edit parts of their documents on demand, and the Find-Fix-Verify crowd programming pattern, which splits tasks into a series of generation and review stages.
Abstract: This paper introduces architectural and interaction patterns for integrating crowdsourced human contributions directly into user interfaces. We focus on writing and editing, complex endeavors that span many levels of conceptual and pragmatic activity. Authoring tools offer help with pragmatics, but for higher-level help, writers commonly turn to other people. We thus present Soylent, a word processing interface that enables writers to call on Mechanical Turk workers to shorten, proofread, and otherwise edit parts of their documents on demand. To improve worker quality, we introduce the Find-Fix-Verify crowd programming pattern, which splits tasks into a series of generation and review stages. Evaluation studies demonstrate the feasibility of crowdsourced editing and investigate questions of reliability, cost, wait time, and work time for edits.

814 citations

Posted Content
TL;DR: In this paper, the authors outline a framework that will enable crowd work that is complex, collaborative, and sustainable, and lay out research challenges in twelve major areas: workflow, task assignment, hierarchy, real-time response, synchronous collaboration, quality control, crowds guiding AIs, AIs guiding crowds, platforms, job design, reputation, and motivation.
Abstract: Paid crowd work offers remarkable opportunities for improving productivity, social mobility, and the global economy by engaging a geographically distributed workforce to complete complex tasks on demand and at scale. But it is also possible that crowd work will fail to achieve its potential, focusing on assembly-line piecework. Can we foresee a future crowd workplace in which we would want our children to participate? This paper frames the major challenges that stand in the way of this goal. Drawing on theory from organizational behavior and distributed computing, as well as direct feedback from workers, we outline a framework that will enable crowd work that is complex, collaborative, and sustainable. The framework lays out research challenges in twelve major areas: workflow, task assignment, hierarchy, real-time response, synchronous collaboration, quality control, crowds guiding AIs, AIs guiding crowds, platforms, job design, reputation, and motivation.

803 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: In this article, an LSTM model with spatial attention was proposed to tackle the 7W QA task, which enables a new type of QA with visual answers, in addition to textual answers used in previous work.
Abstract: We have seen great progress in basic perceptual tasks such as object recognition and detection. However, AI models still fail to match humans in high-level vision tasks due to the lack of capacities for deeper reasoning. Recently the new task of visual question answering (QA) has been proposed to evaluate a model's capacity for deep image understanding. Previous works have established a loose, global association between QA sentences and images. However, many questions and answers, in practice, relate to local regions in the images. We establish a semantic link between textual descriptions and image regions by object-level grounding. It enables a new type of QA with visual answers, in addition to textual answers used in previous work. We study the visual QA tasks in a grounded setting with a large collection of 7W multiple-choice QA pairs. Furthermore, we evaluate human performance and several baseline models on the QA tasks. Finally, we propose a novel LSTM model with spatial attention to tackle the 7W QA tasks.

751 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations