scispace - formally typeset
Search or ask a question
Author

Michael S. Bernstein

Bio: Michael S. Bernstein is an academic researcher from Stanford University. The author has contributed to research in topics: Crowdsourcing & Computer science. The author has an hindex of 52, co-authored 191 publications receiving 42744 citations. Previous affiliations of Michael S. Bernstein include Association for Computing Machinery & Massachusetts Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
07 May 2011
TL;DR: TwitInfo allows users to browse a large collection of tweets using a timeline-based display that highlights peaks of high tweet activity, and can identify 80-100% of manually labeled peaks, facilitating a relatively complete view of each event studied.
Abstract: Microblogs are a tremendous repository of user-generated content about world events. However, for people trying to understand events by querying services like Twitter, a chronological log of posts makes it very difficult to get a detailed understanding of an event. In this paper, we present TwitInfo, a system for visualizing and summarizing events on Twitter. TwitInfo allows users to browse a large collection of tweets using a timeline-based display that highlights peaks of high tweet activity. A novel streaming algorithm automatically discovers these peaks and labels them meaningfully using text from the tweets. Users can drill down to subevents, and explore further via geolocation, sentiment, and popular URLs. We contribute a recall-normalized aggregate sentiment visualization to produce more honest sentiment overviews. An evaluation of the system revealed that users were able to reconstruct meaningful summaries of events in a small amount of time. An interview with a Pulitzer Prize-winning journalist suggested that the system would be especially useful for understanding a long-running event and for identifying eyewitnesses. Quantitatively, our system can identify 80-100% of manually labeled peaks, facilitating a relatively complete view of each event studied.

652 citations

Posted Content
TL;DR: The creation of this benchmark dataset and the advances in object recognition that have been possible as a result are described, and the state-of-the-art computer vision accuracy with human accuracy is compared.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the five years of the challenge, and propose future directions and improvements.

519 citations

Posted Content
TL;DR: This work proposes a model that can scale to predict thousands of types of relationships from a few examples and improves on prior work by leveraging language priors from semantic word embeddings to finetune the likelihood of a predicted relationship.
Abstract: Visual relationships capture a wide variety of interactions between pairs of objects in images (e.g. "man riding bicycle" and "man pushing bicycle"). Consequently, the set of possible relationships is extremely large and it is difficult to obtain sufficient training examples for all possible relationships. Because of this limitation, previous work on visual relationship detection has concentrated on predicting only a handful of relationships. Though most relationships are infrequent, their objects (e.g. "man" and "bicycle") and predicates (e.g. "riding" and "pushing") independently occur more frequently. We propose a model that uses this insight to train visual models for objects and predicates individually and later combines them together to predict multiple relationships per image. We improve on prior work by leveraging language priors from semantic word embeddings to finetune the likelihood of a predicted relationship. Our model can scale to predict thousands of types of relationships from a few examples. Additionally, we localize the objects in the predicted relationships as bounding boxes in the image. We further demonstrate that understanding relationships can improve content based image retrieval.

517 citations

Proceedings ArticleDOI
10 Apr 2010
TL;DR: This paper studied content recommendation on Twitter to better direct user attention and explored three separate dimensions in designing such a recommender: content sources, topic interest models for users, and social voting.
Abstract: More and more web users keep up with newest information through information streams such as the popular micro-blogging website Twitter. In this paper we studied content recommendation on Twitter to better direct user attention. In a modular approach, we explored three separate dimensions in designing such a recommender: content sources, topic interest models for users, and social voting. We implemented 12 recommendation engines in the design space we formulated, and deployed them to a recommender service on the web to gather feedback from real Twitter users. The best performing algorithm improved the percentage of interesting content to 72% from a baseline of 33%. We conclude this work by discussing the implications of our recommender design and how our design can generalize to other information streams.

461 citations

Proceedings ArticleDOI
25 Feb 2017
TL;DR: This article found that both negative mood and seeing troll posts by others significantly increase the probability of a user trolling, and together double this probability, and explored long range patterns of repeated exposure to trolling.
Abstract: In online communities, antisocial behavior such as trolling disrupts constructive discussion. While prior work suggests that trolling behavior is confined to a vocal and antisocial minority, we demonstrate that ordinary people can engage in such behavior as well. We propose two primary trigger mechanisms: the individual's mood, and the surrounding context of a discussion (e.g., exposure to prior trolling behavior). Through an experiment simulating an online discussion, we find that both negative mood and seeing troll posts by others significantly increases the probability of a user trolling, and together double this probability. To support and extend these results, we study how these same mechanisms play out in the wild via a data-driven, longitudinal analysis of a large online news discussion community. This analysis exposes temporal mood effects, and explores long range patterns of repeated exposure to trolling. A predictive model of trolling behavior reveals that mood and discussion context together can explain trolling behavior better than an individual's history of trolling. These results combine to suggest that ordinary people can, under the right circumstances, behave like trolls.

368 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations