scispace - formally typeset
Search or ask a question
Author

Michael S. Branicky

Bio: Michael S. Branicky is an academic researcher from University of Kansas. The author has contributed to research in topics: Hybrid system & Control system. The author has an hindex of 38, co-authored 100 publications receiving 14708 citations. Previous affiliations of Michael S. Branicky include Massachusetts Institute of Technology & Siemens.


Papers
More filters
Journal ArticleDOI
TL;DR: This work model NCSs with packet dropout and multiple-packet transmission as asynchronous dynamical systems and analyze their stability using stability regions and a hybrid systems technique, and discusses methods to compensate network-induced delay.
Abstract: First, we review some previous work on networked control systems (NCSs) and offer some improvements. Then, we summarize the fundamental issues in NCSs and examine them with different underlying network-scheduling protocols. We present NCS models with network-induced delay and analyze their stability using stability regions and a hybrid systems technique. Following that, we discuss methods to compensate network-induced delay and present experimental results over a physical network. Then, we model NCSs with packet dropout and multiple-packet transmission as asynchronous dynamical systems and analyze their stability. Finally, we present our conclusions.

3,467 citations

Journal ArticleDOI
TL;DR: Bendixson's theorem is extended to the case of Lipschitz continuous vector fields, allowing limit cycle analysis of a class of "continuous switched" systems.
Abstract: We introduce some analysis tools for switched and hybrid systems. We first present work on stability analysis. We introduce multiple Lyapunov functions as a tool for analyzing Lyapunov stability and use iterated function systems theory as a tool for Lagrange stability. We also discuss the case where the switched systems are indexed by an arbitrary compact set. Finally, we extend Bendixson's theorem to the case of Lipschitz continuous vector fields, allowing limit cycle analysis of a class of "continuous switched" systems.

3,289 citations

Journal ArticleDOI
01 Jul 2000
TL;DR: In this paper, the authors introduce the concept of hybrid systems and some of the challenges associated with the stability of such systems, including the issues of guaranteeing stability of switched stable systems and finding conditions for the existence of switched controllers for stabilizing switched unstable systems.
Abstract: This paper introduces the concept of a hybrid system and some of the challenges associated with the stability of such systems, including the issues of guaranteeing stability of switched stable systems and finding conditions for the existence of switched controllers for stabilizing switched unstable systems. In this endeavour, this paper surveys the major results in the (Lyapunov) stability of finite-dimensional hybrid systems and then discusses the stronger, more specialized results of switched linear (stable and unstable) systems. A section detailing how some of the results can be formulated as linear matrix inequalities is given. Stability analyses on the regulation of the angle of attack of an aircraft and on the PI control of a vehicle with an automatic transmission are given. Other examples are included to illustrate various results in this paper.

1,647 citations

Journal ArticleDOI
TL;DR: This work introduces a mathematical model of hybrid systems as interacting collections of dynamical systems, evolving on continuous-variable state spaces and subject to continuous controls and discrete transitions, and develops a theory for synthesizing hybrid controllers for hybrid plants in all optimal control framework.
Abstract: We propose a very general framework that systematizes the notion of a hybrid system, combining differential equations and automata, governed by a hybrid controller that issues continuous-variable commands and makes logical decisions. We first identify the phenomena that arise in real-world hybrid systems. Then, we introduce a mathematical model of hybrid systems as interacting collections of dynamical systems, evolving on continuous-variable state spaces and subject to continuous controls and discrete transitions. The model captures the identified phenomena, subsumes previous models, yet retains enough structure to pose and solve meaningful control problems. We develop a theory for synthesizing hybrid controllers for hybrid plants in all optimal control framework. In particular, we demonstrate the existence of optimal (relaxed) and near-optimal (precise) controls and derive "generalized quasi-variational inequalities" that the associated value function satisfies. We summarize algorithms for solving these inequalities based on a generalized Bellman equation, impulse control, and linear programming.

1,363 citations

Book ChapterDOI
01 Aug 2004
TL;DR: There is both experimental and theoretical evidence that some forms of grid search are superior to the original PRM, and all of the deterministic PRM variants are resolution complete and achieve the best possible asymptotic convergence rate.
Abstract: We present, implement, and analyze a spectrum of closely-related planners, designed to gain insight into the relationship between classical grid search and probabilistic roadmaps (PRMs). Building on quasi-Monte Carlo sampling literature, we have developed deterministic variants of the PRM that use low-discrepancy and low-dispersion samples, including lattices. Classical grid search is extended using subsampling for collision detection and also the optimal-dispersion Sukharev grid, which can be considered as a kind of lattice-based roadmap to complete the spectrum. Our experimental results show that the deterministic variants of the PRM offer performance advantages in comparison to the original PRM and the recent Lazy PRM. This even includes searching using a grid with subsampled collision checking. Our theoretical analysis shows that all of our deterministic PRM variants are resolution complete and achieve the best possible asymptotic convergence rate, which is shown superior to that obtained by random sampling. Thus, in surprising contrast to recent trends, there is both experimental and theoretical evidence that some forms of grid search are superior to the original PRM.

439 citations


Cited by
More filters
MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: This work reviews several recent results on estimation, analysis, and controller synthesis for NCSs, and addresses channel limitations in terms of packet-rates, sampling, network delay, and packet dropouts.
Abstract: Networked control systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators, and controllers is supported by a shared communication network. We review several recent results on estimation, analysis, and controller synthesis for NCSs. The results surveyed address channel limitations in terms of packet-rates, sampling, network delay, and packet dropouts. The results are presented in a tutorial fashion, comparing alternative methodologies

3,748 citations

Journal ArticleDOI
TL;DR: This note investigates a simple event-triggered scheduler based on the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant and shows how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.
Abstract: In this note, we revisit the problem of scheduling stabilizing control tasks on embedded processors. We start from the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant. This controller has for objective guaranteeing that (control unrelated) software tasks meet their deadlines and that stabilizing control tasks asymptotically stabilize the plant. We investigate a simple event-triggered scheduler based on this feedback paradigm and show how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.

3,695 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey three basic problems regarding stability and design of switched systems, including stability for arbitrary switching sequences, stability for certain useful classes of switching sequences and construction of stabilizing switching sequences.
Abstract: By a switched system, we mean a hybrid dynamical system consisting of a family of continuous-time subsystems and a rule that orchestrates the switching between them. The article surveys developments in three basic problems regarding stability and design of switched systems. These problems are: stability for arbitrary switching sequences, stability for certain useful classes of switching sequences, and construction of stabilizing switching sequences. We also provide motivation for studying these problems by discussing how they arise in connection with various questions of interest in control theory and applications.

3,566 citations