scispace - formally typeset
Search or ask a question
Author

Michael S. Brown

Bio: Michael S. Brown is an academic researcher from University of Texas Southwestern Medical Center. The author has contributed to research in topics: LDL receptor & Sterol regulatory element-binding protein. The author has an hindex of 185, co-authored 422 publications receiving 123723 citations. Previous affiliations of Michael S. Brown include University of Texas System & University of Texas Health Science Center at San Antonio.


Papers
More filters
Journal ArticleDOI
04 Apr 1986-Science
TL;DR: The approach was to apply the techniques of cell culture to unravel the postulated regulatory defect in FH, which led to the discovery of a cell surface receptor for a plasma cholesterol transport protein called low density lipoprotein (LDL) and to the elucidation of the mechanism by which this receptor mediates feedback control of cholesterol synthesis.
Abstract: In 1901 a physician, Archibald Garrod, observed a patient with black urine. He used this simple observation to demonstrate that a single mutant gene can produce a discrete block in a biochemical pathway, which he called an “inborn error of metabolism”. Garrod’s brilliant insight anticipated by 40 years the one gene-one enzyme concept of Beadle and Tatum. In similar fashion the chemist Linus Pauling and the biochemist Vernon Ingram, through study of patients with sickle cell anemia, showed that mutant genes alter the amino acid sequences of proteins. Clearly, many fundamental advances in biology were spawned by perceptive studies of human genetic diseases (1). We began our work in 1972 in an attempt to understand a human genetic disease, familial hypercholesterolemia or FH. In these patients the concentration of cholesterol in blood is elevated many fold above normal and heart attacks occur early in life. We postulated that this dominantly inherited disease results from a failure of end-product repression of cholesterol synthesis. The possibility fascinated us because genetic defects in feedback regulation had not been observed previously in humans or animals, and we hoped that study of this disease might throw light on fundamental regulatory mechanisms. Our approach was to apply the techniques of cell culture to unravel the postulated regulatory defect in FH. These studies led to the discovery of a cell surface receptor for a plasma cholesterol transport protein called low density lipoprotein (LDL) and to the elucidation of the mechanism by which this receptor mediates feedback control of cholesterol synthesis (2,3). FH was shown to be caused by inherited defects in the gene encoding the LDL receptor, which disrupt the normal control of cholesterol metabolism. Study of the LDL receptor in turn led to the understanding of receptor-mediated endocytosis, a genera! process by which cells communicate with each other through internalization of regulatory and nutritional molecules (4). Receptor-mediated endocytosis differs from previously described biochemical pathways because it depends upon the continuous and highly controlled movement of membraneembedded proteins from one cell organelle to another in a process termed

5,488 citations

Journal ArticleDOI
01 Feb 1990-Nature
TL;DR: The mevalonate pathway produces isoprenoids that are vital for diverse cellular functions, ranging from cholesterol synthesis to growth control, and could be useful in treating certain forms of cancer as well as heart disease.
Abstract: The mevalonate pathway produces isoprenoids that are vital for diverse cellular functions, ranging from cholesterol synthesis to growth control. Several mechanisms for feedback regulation of low-density-lipoprotein receptors and of two enzymes involved in mevalonate biosynthesis ensure the production of sufficient mevalonate for several end-products. Manipulation of this regulatory system could be useful in treating certain forms of cancer as well as heart disease.

5,125 citations

Journal ArticleDOI
TL;DR: The complex, interdigitated roles of these three SREBPs have been dissected through the study of ten different lines of gene-manipulated mice and form the subject of this review.
Abstract: Lipid homeostasis in vertebrate cells is regulated by a family of membrane-bound transcription factors designated sterol regulatory element–binding proteins (SREBPs). SREBPs directly activate the expression of more than 30 genes dedicated to the synthesis and uptake of cholesterol, fatty acids, triglycerides, and phospholipids, as well as the NADPH cofactor required to synthesize these molecules (1–4). In the liver, three SREBPs regulate the production of lipids for export into the plasma as lipoproteins and into the bile as micelles. The complex, interdigitated roles of these three SREBPs have been dissected through the study of ten different lines of gene-manipulated mice. These studies form the subject of this review.

4,406 citations

Journal ArticleDOI
02 May 1997-Cell
TL;DR: This research was supported by grants from the National Institutes of Health (HL20948) and the Perot Family Foundation.

3,626 citations

Journal ArticleDOI
TL;DR: It is hypothesized that this macrophage uptake mechanism may mediate the degradation of denatured LDL in the body and thus serve as a "backup" mechanism for the previously described receptor-mediated degradation of native LDL that occurs in parenchymal cells.
Abstract: Resident mouse peritoneal macrophages were shown to take up and degrade acetylated 125I-labeled low density lipoprotein (125I-acetyl-LDL) in vitro at rates that were 20-fold greater than those for the uptake and degradation of 125I-LDL. The uptake of 125I-acetyl-LDL and its subsequent degradation in lysosomes were attributable to a high-affinity, trypsin-sensitive, surface binding site that recognized acetyl-LDL but not native LDL. When 125I-acetyl-LDL was bound to this site at 4°C and the macrophages were subsequently warmed to 37°C, 75% of the cell-bound radioactivity was degraded to mono[125I]iodotyrosine within 1 hr. The macrophage binding site also recognized maleylated LDL, maleylated albumin, and two sulfated polysaccharides (fucoidin and dextran sulfate) indicating that negative charges were important in the binding reaction. A similar binding site was present on rat peritoneal macrophages, guinea pig Kupffer cells, and cultured human monocytes but not on human lymphocytes or fibroblasts, mouse L cells or Y-1 adrenal cells, or Chinese hamster ovary cells. Uptake and degradation of acetyl-LDL via this binding site stimulated cholesterol esterification 100-fold and produced a 38-fold increase in the cellular content of cholesterol in mouse peritoneal macrophages. Although the physiologic significance, if any, of this macrophage uptake mechanism is not yet known, we hypothesize that it may mediate the degradation of denatured LDL in the body and thus serve as a “backup” mechanism for the previously described receptor-mediated degradation of native LDL that occurs in parenchymal cells. Such a scavenger pathway might account for the widespread deposition of LDL-derived cholesteryl esters in macrophages of patients with familial hypercholesterolemia in whom the parenchymal cell pathway for LDL degradation is blocked, owing to a genetic deficiency of receptors for native LDL.

2,430 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations

Journal ArticleDOI
13 May 1988-Science
TL;DR: A superfamily of regulatory proteins that include receptors for thyroid hormone and the vertebrate morphogen retinoic acid is identified, suggesting mechanisms underlying morphogenesis and homeostasis may be more ubiquitous than previously expected.
Abstract: Analyses of steroid receptors are important for understanding molecular details of transcriptional control, as well as providing insight as to how an individual transacting factor contributes to cell identity and function. These studies have led to the identification of a superfamily of regulatory proteins that include receptors for thyroid hormone and the vertebrate morphogen retinoic acid. Although animals employ complex and often distinct ways to control their physiology and development, the discovery of receptor-related molecules in a wide range of species suggests that mechanisms underlying morphogenesis and homeostasis may be more ubiquitous than previously expected.

7,493 citations

Journal ArticleDOI
14 Nov 1997-Cell
TL;DR: Mutation of the active site of caspase-9 attenuated the activation of cazase-3 and cellular apoptotic response in vivo, indicating that casp enzyme-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.

7,231 citations