scispace - formally typeset
Search or ask a question
Author

Michael S. Patterson

Bio: Michael S. Patterson is an academic researcher from McMaster University. The author has contributed to research in topics: Scattering & Photosensitizer. The author has an hindex of 64, co-authored 230 publications receiving 19131 citations. Previous affiliations of Michael S. Patterson include Purdue University & United States Army Research Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple model is developed, based on the diffusion approximation to radiative transfer theory, which yields analytic expressions for the pulse shape in terms of the interaction coefficients of a homogeneous slab.
Abstract: When a picosecond light pulse is incident on biological tissue, the temporal characteristics of the light backscattered from, or transmitted through, the sample carry information about the optical absorption and scattering coefficients of the tissue. We develop a simple model, based on the diffusion approximation to radiative transfer theory, which yields analytic expressions for the pulse shape in terms of the interaction coefficients of a homogeneous slab. The model predictions are in good agreement with the results of preliminary in vivo experiments and Monte Carlo simulations.

2,242 citations

Journal ArticleDOI
TL;DR: A model based upon steady-state diffusion theory which describes the radial dependence of diffuse reflectance of light from tissues is developed and the optical properties derived for the phantoms are within 5%-10% of those determined by other established techniques.
Abstract: A model based upon steady-state diffusion theory which describes the radial dependence of diffuse reflectance of light from tissues is developed. This model incorporates a photon dipole source in order to satisfy the tissue boundary conditions and is suitable for either refractive index matched or mismatched surfaces. The predictions of the model were compared with Monte Carlo simulations as well as experimental measurements made with tissue simulating phantoms. The model describes the reflectance data accurately to radial distances as small as 0.5 mm when compared to Monte Carlo simulations and agrees with experimental measurements to distances as small as 1 mm. A nonlinear least-squares fitting procedure has been used to determine the tissue optical properties from the radial reflectance data in both phantoms and tissues in vivo. The optical properties derived for the phantoms are within 5%-10% of those determined by other established techniques. The in vivo values are also consistent with those reported by other investigators.

1,541 citations

Journal ArticleDOI
TL;DR: The current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality are reviewed.
Abstract: Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components—light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT.

885 citations

Journal ArticleDOI
TL;DR: This review is an attempt to indicate which sets of phantoms are optimal for specific applications, and provide links to studies that characterize main phantom material properties and recipes.
Abstract: Optical spectroscopy, imaging, and therapy tissue phantoms must have the scattering and absorption properties that are characteristic of human tissues, and over the past few decades, many useful models have been created. In this work, an overview of their composition and properties is outlined, by separating matrix, scattering, and absorbing materials, and discussing the benefits and weaknesses in each category. Matrix materials typically are water, gelatin, agar, polyester or epoxy and polyurethane resin, room-temperature vulcanizing (RTV) silicone, or polyvinyl alcohol gels. The water and hydrogel materials provide a soft medium that is biologically and biochemically compatible with addition of organic molecules, and are optimal for scientific laboratory studies. Polyester, polyurethane, and silicone phantoms are essentially permanent matrix compositions that are suitable for routine calibration and testing of established systems. The most common three choices for scatters have been: (1.) lipid based emulsions, (2.) titanium or aluminum oxide powders, and (3.) polymer microspheres. The choice of absorbers varies widely from hemoglobin and cells for biological simulation, to molecular dyes and ink as less biological but more stable absorbers. This review is an attempt to indicate which sets of phantoms are optimal for specific applications, and provide links to studies that characterize main phantom material properties and recipes.

763 citations

Journal ArticleDOI
TL;DR: On analysis ofin vitro assays of human natural killer (NK) cell function the inadequacy of commonly used methods of expressing lytic activity was apparent and a comparison was made of the data obtained using modifications of two equations—the simple exponential fit and the von Krogh equations.
Abstract: On analysis ofin vitro assays of human natural killer (NK) cell function the inadequacy of commonly used methods of expressing lytic activity was apparent. A comparison was made of the data obtained using modifications of two equations—the simple exponential fit and the von Krogh equations. Both of these equations were found to satisfy the following essential criteria for use in these assays. First, the majority of the results obtained in the chromium-release assay could be used in data reduction; second, the resultant “dose-response” curve was reduced to linearity; and third, a single numerical expression was obtained which was directly proportional to the cytotoxic activity. Of the two methods the more conventional exponential fit was found to be the simpler to use. The closeness of fit of the experimentally derived data to the ideal curves did not support the possibility that normal lymphocyte preparations contain suppressor cells capable of inhibiting NK activity. Data have also been presented showing that NK-sensitive targets could be categorized with respect to their susceptibility by comparing the slopes of the target cell survival curves obtained using the exponential fit equation. These observations are relevant to the accurate assessment of NK activity in patient populations and to the determination of the effects of disease and its treatment on this activity.

681 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: In vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage, and found good correlation with histological findings.
Abstract: Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (DeltaT = 37.4 +/- 6.6 degrees C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (DeltaT < 10 degrees C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.

3,774 citations

Journal ArticleDOI
TL;DR: The photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells as discussed by the authors, which can prolong survival in patients with inoperable cancers and significantly improve quality of life.
Abstract: Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment. CA Cancer J Clin 2011;61:250-281. V C

3,770 citations

Book ChapterDOI
TL;DR: The existence of NK cells has prompted a reinterpretation of both the studies of specific cytotoxicity against spontaneous human tumors and the theory of immune surveillance, at least in its most restrictive interpretation.
Abstract: Publisher Summary Studies of cytotoxicity by human lymphocytes revealed not only that both allogeneic and syngeneic tumor cells were lysed in a non-MHC-restricted fashion, but also that lymphocytes from normal donors were often cytotoxic. Lymphocytes from any healthy donor, as well as peripheral blood and spleen lymphocytes from several experimental animals, in the absence of known or deliberate sensitization, were found to be spontaneously cytotoxic in vitro for some normal fresh cells, most cultured cell lines, immature hematopoietic cells, and tumor cells. This type of nonadaptive, non-MHC-restricted cellmediated cytotoxicity was defined as “natural” cytotoxicity, and the effector cells mediating natural cytotoxicity were functionally defined as natural killer (NK) cells. The existence of NK cells has prompted a reinterpretation of both the studies of specific cytotoxicity against spontaneous human tumors and the theory of immune surveillance, at least in its most restrictive interpretation. Unlike cytotoxic T cells, NK cells cannot be demonstrated to have clonally distributed specificity, restriction for MHC products at the target cell surface, or immunological memory. NK cells cannot yet be formally assigned to a single lineage based on the definitive identification of a stem cell, a distinct anatomical location of maturation, or unique genotypic rearrangements.

2,982 citations

Journal ArticleDOI
TL;DR: A review of reported tissue optical properties summarizes the wavelength-dependent behavior of scattering and absorption in cells and tissues.
Abstract: A review of reported tissue optical properties summarizes the wavelength-dependent behavior of scattering and absorption. Formulae are presented for generating the optical properties of a generic tissue with variable amounts of absorbing chromophores (blood, water, melanin, fat, yellow pigments) and a variable balance between small-scale scatterers and large-scale scatterers in the ultrastructures of cells and tissues.

2,920 citations