scispace - formally typeset
Search or ask a question
Author

Michael S. Silverstein

Bio: Michael S. Silverstein is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Polymerization & Polymer. The author has an hindex of 41, co-authored 115 publications receiving 4510 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Porous emulsion-templated polymers are highly viscous, paste-like emulsions in which the major, "internal" phase, usually defined as constituting more than 74% of the volume, is dispersed within the continuous, minor, "external" phase.

548 citations

Journal ArticleDOI
14 Jan 2014-Polymer
TL;DR: PolyHIPEs as mentioned in this paper are porous emulsion-templated polymers synthesized within high internal phase emulsions (HIPE), which are highly viscous, paste-like emulsionions in which the major, "internal" phase, usually defined as constituting more than 74% of the volume, is dispersed as discrete droplets within the continuous, minor, "external" phase.

245 citations

Journal ArticleDOI
TL;DR: In this paper, the original hydrophobic porous polymers were synthesized within surfactant-stabilized water-in-oil high internal phase emulsions (HIPEs) by us.
Abstract: Emulsion templating presently extends far beyond the original hydrophobic porous polymers that were synthesized within surfactant-stabilized water-in-oil high internal phase emulsions (HIPEs) by us...

223 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal decomposition of poly(acrylic acid) (PAAc) containing copper nitrate (CueN) was investigated in the case of an HTSC precursor containing copper, barium and yttrium nitrates.

174 citations

Journal ArticleDOI
08 Aug 2005-Polymer
TL;DR: In this paper, a hybrid polyHIPE that combines an inorganic polysilsesquioxane network with an organic polystyrene network exhibited superior high temperature mechanical properties and enhanced thermal stability.

149 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 1971-Nature
TL;DR: Lipson and Steeple as mentioned in this paper interpreted X-ray powder diffraction patterns and found that powder-diffraction patterns can be represented by a set of 3-dimensional planes.
Abstract: Interpretation of X-ray Powder Diffraction Patterns . By H. Lipson and H. Steeple. Pp. viii + 335 + 3 plates. (Mac-millan: London; St Martins Press: New York, May 1970.) £4.

1,867 citations

Journal ArticleDOI
TL;DR: This work presents a new mesoporous composite material suitable for high-performance liquid chromatography and shows good chiral recognition ability and high uniformity in various racemates.
Abstract: Dingcai Wu,*,† Fei Xu,† Bin Sun,† Ruowen Fu,† Hongkun He,‡ and Krzysztof Matyjaszewski*,‡ †Materials Science Institute, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China ‡Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States

1,455 citations

Journal ArticleDOI
07 Mar 2007-Sensors
TL;DR: In this article, a review of gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers has been reviewed.
Abstract: The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

1,333 citations

01 Mar 1996
TL;DR: In this paper, a mean-field phase diagram for conformationally symmetric diblock melts using the standard Gaussian polymer model is presented, which traverses the weak- to strong-segregation regimes, is free of traditional approximations.
Abstract: A mean-field phase diagram for conformationally symmetric diblock melts using the standard Gaussian polymer model is presented. Our calculation, which traverses the weak- to strong-segregation regimes, is free of traditional approximations. Regions of stability are determined for disordered (DIS) melts and for ordered structures including lamellae (L), hexagonally packed cylinders (H), body-centered cubic spheres (QIm3m), close-packed spheres (CPS), and the bicontinuous cubic network with Ia3d symmetry (QIa3d). The CPS phase exists in narrow regions along the order−disorder transition for χN ≥ 17.67. Results suggest that the QIa3d phase is not stable above χN ∼ 60. Along the L/QIa3d phase boundaries, a hexagonally perforated lamellar (HPL) phase is found to be nearly stable. Our results for the bicontinuous Pn3m cubic (QPn3m) phase, known as the OBDD, indicate that it is an unstable structure in diblock melts. Earlier approximation schemes used to examine mean-field behavior are reviewed, and compa...

1,256 citations

Journal ArticleDOI
TL;DR: Catalytic Solvents: Catalyst Disproportionation 4981 2.2.1.
Abstract: 2.1.6. Tacticity and Sequence: Advanced Control 4967 2.2. Transition Metal Catalysts 4967 2.2.1. Overviews of Catalysts 4967 2.2.2. Ruthenium 4967 2.2.3. Copper 4971 2.2.4. Iron 4971 2.2.5. Nickel 4975 2.2.6. Molybdenum 4975 2.2.7. Manganese 4976 2.2.8. Osmium 4976 2.2.9. Cobalt 4976 2.2.10. Other Metals 4976 2.3. Cocatalysts (Additives) 4977 2.3.1. Overview of Cocatalysts 4977 2.3.2. Reducing Agents 4977 2.3.3. Free Radical Initiators 4977 2.3.4. Metal Alkoxides 4977 2.3.5. Amines 4978 2.3.6. Halogen Source 4978 2.4. Initiators 4978 2.4.1. Overview of Initiators: Scope and Design 4978 2.4.2. Alkyl Halides 4978 2.4.3. Arenesulfonyl Halides 4979 2.4.4. N-Chloro Compounds 4979 2.4.5. Halogen-Free Initiators 4979 2.5. Solvents 4980 2.5.1. Overview of Solvents 4980 2.5.2. Catalyst Solubility and Coordination of Solvent 4981 2.5.3. Environmentally Friendly Solvents 4981 2.5.4. Water 4981 2.5.5. Catalytic Solvents: Catalyst Disproportionation 4981

1,131 citations