scispace - formally typeset
Search or ask a question
Author

Michael S. Triantafyllou

Bio: Michael S. Triantafyllou is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Vortex & Reynolds number. The author has an hindex of 61, co-authored 382 publications receiving 16206 citations. Previous affiliations of Michael S. Triantafyllou include Harvard University & Nanyang Technological University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.
Abstract: Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Karman street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.

1,209 citations

Journal ArticleDOI
TL;DR: In this article, the principal mechanism for producing propulsive and transient forces in oscillating flexible bodies and fins in water, the formation and control of large-scale vortices, was identified.
Abstract: Interest in novel forms of marine propulsion and maneuvering has sparked a number of studies on unsteadily operating propulsors. We review recent experimental and theoretical work identifying the principal mechanism for producing propulsive and transient forces in oscillating flexible bodies and fins in water, the formation and control of large-scale vortices. Connection with studies on live fish is made, explaining the observed outstanding fish agility.

816 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that a stable coexistence of the jet profile and the large-scale patterns is ensured only at the frequency of maximum amplification, hence at this frequency optimal efficiency is obtained, i.e., maximum thrust per unit input energy.

808 citations

Journal ArticleDOI
28 Nov 2003-Science
TL;DR: Quantitative flow visualization and electromyography is used to show that trout will adopt a novel mode of locomotion to slalom in between experimentally generated vortices by activating only their anterior axial muscles.
Abstract: Fishes moving through turbulent flows or in formation are regularly exposed to vortices. Although animals living in fluid environments commonly capture energy from vortices, experimental data on the hydrodynamics and neural control of interactions between fish and vortices are lacking. We used quantitative flow visualization and electromyography to show that trout will adopt a novel mode of locomotion to slalom in between experimentally generated vortices by activating only their anterior axial muscles. Reduced muscle activity during vortex exploitation compared with the activity of fishes engaged in undulatory swimming suggests a decrease in the cost of locomotion and provides a mechanism to understand the patterns of fish distributions in schools and riverine environments.

756 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
01 Jan 1998-Analysis
TL;DR: The authors advocate an externalism about mind, but one that is in no way grounded in the debatable role of external reference in fixing the contents of our mental states, rather, they advocate an *active externalism*, based on the active role of the environment in driving cognitive processes.
Abstract: Where does the mind stop and the rest of the world begin? The question invites two standard replies. Some accept the intuitive demarcations of skin and skull, and say that what is outside the body is outside the mind. Others are impressed by arguments suggesting that the meaning of our words "just ain't in the head", and hold that this externalism about meaning carries over into an externalism about mind. We propose to pursue a third position. We will advocate an externalism about mind, but one that is in no way grounded in the debatable role of external reference in fixing the contents of our mental states. Rather, we advocate an *active externalism*, based on the active role of the environment in driving cognitive processes.

4,172 citations

Book
01 Dec 1996
TL;DR: Clark as mentioned in this paper argues that the mental has been treated as a realm that is distinct from the body and the world, and argues that a key to understanding brains is to see them as controllers of embodied activity.
Abstract: From the Publisher: The old opposition of matter versus mind stubbornly persists in the way we study mind and brain. In treating cognition as problem solving, Andy Clark suggests, we may often abstract too far from the very body and world in which our brains evolved to guide us. Whereas the mental has been treated as a realm that is distinct from the body and the world, Clark forcefully attests that a key to understanding brains is to see them as controllers of embodied activity. From this paradigm shift he advances the construction of a cognitive science of the embodied mind.

3,745 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations