scispace - formally typeset
Search or ask a question
Author

Michael S. Turner

Bio: Michael S. Turner is an academic researcher from University of Chicago. The author has contributed to research in topics: Cosmology & Dark matter. The author has an hindex of 81, co-authored 376 publications receiving 38186 citations. Previous affiliations of Michael S. Turner include NASA Headquarters & Loyola University Chicago.


Papers
More filters
Book
01 Jan 1990
TL;DR: In this article, the Robertson-Walker Metric is used to measure the radius of the Planck Epoch in the expanding universe, which is a measure of the number of atoms in the universe.
Abstract: * Editors Foreword * The Universe Observed * Robertson-Walker Metric * Standard Cosmology * Big-Bang Nucleosynthesis * Thermodynamics in the Expanding Universe * Baryogenesis * Phase Transitions * Inflation * Structure Formation * Axions * Toward the Planck Epoch * Finale

6,319 citations

Journal ArticleDOI
10 Dec 1981-Nature
TL;DR: In the early 1990s, the NSF's Institute for Theoretical Physics in Santa Barbara devoted a 6-month program and an intensive 1-week workshop to the subject as discussed by the authors.
Abstract: In the past few years one of the most exciting areas of research in physics has been the interdisciplinary field of cosmology and particle physics. The NSF's Institute for Theoretical Physics in Santa Barbara devoted a 6-month program and an intensive 1-week workshop to the subject. A brief review is given of both the workshop and this field which is attracting attention, in part, because the early Universe seems to be the only laboratory in which to study grand unification.

3,436 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that cosmic acceleration can arise due to very tiny corrections to the usual gravitational action of general relativity, of the form{R}^{\ensuremath{-}n}$ with $ng0.$.
Abstract: We show that cosmic acceleration can arise due to very tiny corrections to the usual gravitational action of general relativity, of the form ${R}^{\ensuremath{-}n}$ with $ng0.$ This model eliminates the need for a nonzero cosmological constant or any other form of dark energy, attributing a purely gravitational origin to the acceleration of the universe.

2,271 citations

Journal ArticleDOI
TL;DR: In this paper, the creation and evolution of energy-density perturbations are analyzed for the new inflationary universe scenario proposed by Linde, and Albrecht and Steinhardt.
Abstract: The creation and evolution of energy-density perturbations are analyzed for the "new inflationary universe" scenario proposed by Linde, and Albrecht and Steinhardt. According to the scenario, the Universe underwent a strongly first-order phase transition and entered a "de Sitter phase" of exponential expansion during which all previously existing energy-density perturbations expanded to distance scales very large compared to the size of our observable Universe. The existence of an event horizon during the de Sitter phase gives rise to zero-point fluctuations in the scalar field $\ensuremath{\varphi}$, whose slowly growing expectation value signals the transition to the spontaneous-symmetry-breaking (SSB) phase of a grand unified theory (GUT). The fluctuations in $\ensuremath{\varphi}$ are created on small distance scales and expanded to large scales, eventually giving rise to an almost scale-free spectrum of adiabatic density perturbations (the so-called Zel'dovich spectrum). When a fluctuation reenters the horizon ($\mathrm{radius}\ensuremath{\simeq}{H}^{\ensuremath{-}1}$) during the Friedmann-Robertson-Walker (FRW) phase that follows the exponential expansion, it has a perturbation amplitude ${\frac{\ensuremath{\delta}\ensuremath{\rho}}{\ensuremath{\rho}}|}_{H}=(4 or \frac{2}{5})H\frac{\ensuremath{\Delta}\ensuremath{\varphi}}{\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})}$, where $H$ is the Hubble constant during the de Sitter phase (${H}^{\ensuremath{-}1}$ is the radius of the event horizon), $\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})$ is the mean value of $\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}$ at the time (${t}_{1}$) that the wavelength of the perturbation expanded beyond the Hubble radius during the de Sitter epoch, $\ensuremath{\Delta}\ensuremath{\varphi}$ is the fluctuation in $\ensuremath{\varphi}$ at time ${t}_{1}$ on the same scale, and $4(\frac{2}{5})$ applies if the Universe is radiation (matter) dominated when the scale in question reenters the horizon. Scales larger than about ${10}^{15}\ensuremath{-}{10}^{16}{M}_{\ensuremath{\bigodot}}$ reenter the horizon when the Universe is matter dominated. Owing to the Sachs-Wolfe effect, these density perturbations give rise to temperature fluctuations in the microwave background which, on all angular scales \ensuremath{\gg}1\ifmmode^\circ\else\textdegree\fi{}, are $\frac{\ensuremath{\delta}T}{T}\ensuremath{\simeq}(\frac{1}{5})H\frac{\ensuremath{\Delta}\ensuremath{\varphi}}{\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})}$. The value of $\ensuremath{\Delta}\ensuremath{\varphi}$ expected from de Sitter fluctuations is $O(\frac{H}{2\ensuremath{\pi}})$. For the simplest model of "new inflation," that based on an SU(5) GUT with Coleman-Weinberg SSB, $\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})\ensuremath{\ll}{H}^{2}$ so that $\frac{\ensuremath{\delta}T}{T}\ensuremath{\gg}1$---in obvious conflict with the large-scale isotropy of the microwave background. One remedy for this is a model in which the inflation occurs when $\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\varphi}}({t}_{1})\ensuremath{\gg}{H}^{2}$. We analyze a supersymmetric model which has this feature, and show that a value of ${\frac{\ensuremath{\delta}\ensuremath{\rho}}{\ensuremath{\rho}}|}_{H}\ensuremath{\simeq}{10}^{\ensuremath{-}4}\ensuremath{-}{10}^{\ensuremath{-}3}$ on all observable scales is not implausible.

1,800 citations

Journal ArticleDOI
Abstract: Ten years ago, the discovery that the expansion of the universe is accelerating put in place the last major building block of the present cosmological model, in which the universe is composed of 4% baryons, 20% dark matter, and 76% dark energy. At the same time, it posed one of the most profound mysteries in all of science, with deep connections to both astrophysics and particle physics. Cosmic acceleration could arise from the repulsive gravity of dark energy—for example, the quantum energy of the vacuum—or it may signal that general relativity (GR) breaks down on cosmological scales and must be replaced. We review the present observational evidence for cosmic acceleration and what it has revealed about dark energy, discuss the various theoretical ideas that have been proposed to explain acceleration, and describe the key observational probes that will shed light on this enigma in the coming years.

1,627 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this article, the authors find that the emerging standard model of cosmology, a flat -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data.
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

10,650 citations