scispace - formally typeset
Search or ask a question
Author

Michael Schumacher

Other affiliations: Lahti University of Applied Sciences, Open University, Wallis  ...read more
Bio: Michael Schumacher is an academic researcher from University of Applied Sciences Western Switzerland. The author has contributed to research in topics: Multi-agent system & Autonomous agent. The author has an hindex of 28, co-authored 154 publications receiving 3130 citations. Previous affiliations of Michael Schumacher include Lahti University of Applied Sciences & Open University.


Papers
More filters
Proceedings Article
01 Jan 2017
TL;DR: A framework on managing and sharing EMR data for cancer patient care using blockchain to significantly reduce the turnaround time for EMR sharing, improve decision making for medical care, and reduce the overall cost is proposed.
Abstract: Electronic medical records (EMRs) are critical, highly sensitive private information in healthcare, and need to be frequently shared among peers. Blockchain provides a shared, immutable and transparent history of all the transactions to build applications with trust, accountability and transparency. This provides a unique opportunity to develop a secure and trustable EMR data management and sharing system using blockchain. In this paper, we present our perspectives on blockchain based healthcare data management, in particular, for EMR data sharing between healthcare providers and for research studies. We propose a framework on managing and sharing EMR data for cancer patient care. In collaboration with Stony Brook University Hospital, we implemented our framework in a prototype that ensures privacy, security, availability, and fine-grained access control over EMR data. The proposed work can significantly reduce the turnaround time for EMR sharing, improve decision making for medical care, and reduce the overall cost.

247 citations

Journal ArticleDOI
TL;DR: In vivo and in vitro, TRO19622 rescued motor neurons from axotomy-induced cell death in neonatal rats and promoted nerve regeneration following sciatic nerve crush in mice, suggesting a potential mechanism for its neuroprotective activity.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive death of cortical and spinal motor neurons, for which there is no effective treatment. Using a cell-based assay for compounds capable of preventing motor neuron cell death in vitro, a collection of approximately 40,000 low-molecular-weight compounds was screened to identify potential small-molecule therapeutics. We report the identification of cholest-4-en-3-one, oxime (TRO19622) as a potential drug candidate for the treatment of ALS. In vitro, TRO19622 promoted motor neuron survival in the absence of trophic support in a dose-dependent manner. In vivo, TRO19622 rescued motor neurons from axotomy-induced cell death in neonatal rats and promoted nerve regeneration following sciatic nerve crush in mice. In SOD1 G93A transgenic mice, a model of familial ALS, TRO19622 treatment improved motor performance, delayed the onset of the clinical disease, and extended survival. TRO19622 bound directly to two components of the mitochondrial permeability transition pore: the voltage-dependent anion channel and the translocator protein 18 kDa (or peripheral benzodiazepine receptor), suggesting a potential mechanism for its neuroprotective activity. TRO19622 may have therapeutic potential for ALS and other motor neuron and neurodegenerative diseases.

239 citations

Posted Content
TL;DR: In this paper, a framework for managing and sharing electronic medical records (EMRs) for cancer patient care is proposed, which can significantly reduce the turnaround time for EMR sharing, improve decision making for medical care, and reduce the overall cost.
Abstract: Electronic medical records (EMRs) are critical, highly sensitive private information in healthcare, and need to be frequently shared among peers. Blockchain provides a shared, immutable and transparent history of all the transactions to build applications with trust, accountability and transparency. This provides a unique opportunity to develop a secure and trustable EMR data management and sharing system using blockchain. In this paper, we present our perspectives on blockchain based healthcare data management, in particular, for EMR data sharing between healthcare providers and for research studies. We propose a framework on managing and sharing EMR data for cancer patient care. In collaboration with Stony Brook University Hospital, we implemented our framework in a prototype that ensures privacy, security, availability, and fine-grained access control over EMR data. The proposed work can significantly reduce the turnaround time for EMR sharing, improve decision making for medical care, and reduce the overall cost

208 citations

Journal ArticleDOI
TL;DR: Loss-of-function analyses in zebrafish embryos show a key role for Wnt/β-catenin signaling in the expression of myelin genes and in myelin sheath compaction, both in the peripheral and central nervous systems.
Abstract: Wnt/β-catenin signaling plays a major role in the development of the nervous system and contributes to neuronal plasticity. However, its role in myelination remains unclear. Here, we identify the Wnt/β-catenin pathway as an essential driver of myelin gene expression. The selective inhibition of Wnt components by small interfering RNA or dominant-negative forms blocks the expression of myelin protein zero (MPZ) and peripheral myelin protein 22 (PMP22) in mouse Schwann cells and proteolipid protein in mouse oligodendrocytes. Moreover, the activation of Wnt signaling by recombinant Wnt1 ligand increases by threefold the transcription of myelin genes and enhances the binding of β-catenin to T-cell factor/lymphoid-enhancer factor transcription factors present in the vicinity of the MPZ and PMP22 promoters. Most important, loss-of-function analyses in zebrafish embryos show, in vivo, a key role for Wnt/β-catenin signaling in the expression of myelin genes and in myelin sheath compaction, both in the peripheral and central nervous systems. Inhibition of Wnt/β-catenin signaling resulted in hypomyelination, without affecting Schwann cell and oligodendrocyte generation or axonal integrity. The present findings attribute to Wnt/β-catenin pathway components an essential role in myelin gene expression and myelinogenesis.

167 citations

Journal ArticleDOI
TL;DR: This work demonstrates that etifoxine, a clinically approved drug already used for the treatment of anxiety disorders, is remarkably efficient in promoting acceleration of peripheral nerve regeneration and functional recovery.
Abstract: Peripheral nerves show spontaneous regenerative responses, but recovery after injury or peripheral neuropathies (toxic, diabetic, or chronic inflammatory demyelinating polyneuropathy syndromes) is slow and often incomplete, and at present no efficient treatment is available. Using well-defined peripheral nerve lesion paradigms, we assessed the therapeutic usefulness of etifoxine, recently identified as a ligand of the translocator protein (18 kDa) (TSPO), to promote axonal regeneration, modulate inflammatory responses, and improve functional recovery. We found by histologic analysis that etifoxine therapy promoted the regeneration of axons in and downstream of the lesion after freeze injury and increased axonal growth into a silicone guide tube by a factor of 2 after nerve transection. Etifoxine also stimulated neurite outgrowth in PC12 cells, and the effect was even stronger than for specific TSPO ligands. Etifoxine treatment caused a marked reduction in the number of macrophages after cryolesion within the nerve stumps, which was rapid in the proximal and delayed in the distal nerve stumps. Functional tests revealed accelerated and improved recovery of locomotion, motor coordination, and sensory functions in response to etifoxine. This work demonstrates that etifoxine, a clinically approved drug already used for the treatment of anxiety disorders, is remarkably efficient in promoting acceleration of peripheral nerve regeneration and functional recovery. Its possible mechanism of action is discussed, with reference to the neurosteroid concept. This molecule, which easily enters nerve tissues and regulates multiple functions in a concerted manner, offers promise for the treatment of peripheral nerve injuries and axonal neuropathies.

130 citations


Cited by
More filters
01 Jan 2016

1,538 citations

Journal ArticleDOI
TL;DR: GABAA (γ-aminobutyric acid type A) receptors mediate most of the 'fast' synaptic inhibition in the mammalian brain and are targeted by many clinically important drugs.
Abstract: GABA(A) (gamma-aminobutyric acid type A) receptors mediate most of the 'fast' synaptic inhibition in the mammalian brain and are targeted by many clinically important drugs. Certain naturally occurring pregnane steroids can potently and specifically enhance GABA(A) receptor function in a nongenomic (direct) manner, and consequently have anxiolytic, analgesic, anticonvulsant, sedative, hypnotic and anaesthetic properties. These steroids not only act as remote endocrine messengers, but also can be synthesized in the brain, where they modify neuronal activity locally by modulating GABA(A) receptor function. Such 'neurosteroids' can influence mood and behaviour in various physiological and pathophysiological situations, and might contribute to the behavioural effects of psychoactive drugs.

1,042 citations

Journal ArticleDOI
TL;DR: The pathway leading from soluble and monomeric to hyperphosphorylated, insoluble and filamentous tau protein is at the centre of many human neurodegenerative diseases, collectively referred to as tauopathies.
Abstract: The pathway leading from soluble and monomeric to hyperphosphorylated, insoluble and filamentous tau protein is at the centre of many human neurodegenerative diseases, collectively referred to as tauopathies. Dominantly inherited mutations in MAPT, the gene that encodes tau, cause forms of frontotemporal dementia and parkinsonism, proving that dysfunction of tau is sufficient to cause neurodegeneration and dementia. However, most cases of tauopathy are not inherited in a dominant manner. The first tau aggregates form in a few nerve cells in discrete brain areas. These become self propagating and spread to distant brain regions in a prion-like manner. The prevention of tau aggregation and propagation is the focus of attempts to develop mechanism-based treatments for tauopathies.

899 citations

Journal ArticleDOI
12 May 2011-Neuron
TL;DR: While the microtubule-binding capacity of the protein tau has been known for many years, new functions of tau in signaling and cytoskeletal organization have recently emerged and their potential roles in neurodegenerative disease are highlighted.

814 citations