scispace - formally typeset
Search or ask a question
Author

Michael Schütz

Bio: Michael Schütz is an academic researcher. The author has contributed to research in topics: Circadian rhythm & Melatonin. The author has an hindex of 1, co-authored 1 publications receiving 111 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Melatonin treatment can accelerate resynchronization of the melatonin excretion rhythm after eastward time zone transitions, but the improvement is not, however, sufficiently great that it can be recommend melatonin for the alleviation of jet lag.
Abstract: The hormone melatonin is currently proposed by some investigators to be an efficient means for decreasing the impairing effects of jet lag. Eight healthy male subjects, aged 20 to 32, underwent a 9-hr advance shift in the isolation facility of our institute during two periods each of 15 days' duration. In a double-blind, crossover design, subjects took either melatonin or placebo at 1800 hr local time for 3 days before the time shift and at 1400 hr for 4 days afterwards. The time shift was simulated on days 7 and 8 by shortening the sleep period by 6 hr and the following wake period by 3 hr. Body temperature was recorded every 90 min, and urine was collected at 3-hr intervals all day and night. Melatonin treatment enhanced the resynchronization speed of some, but not all, hormone and electrolyte excretion rates for several days after the time shift. The adaptation speed of the temperature rhythm significantly increased during one postshift day. In addition, the circadian temperature rhythm had a significa...

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Exogenous melatonin can act as soporific agent, a chronohypnotic, and/or a chronobiotic in order to treat sleep or circadian rhythm disorders.
Abstract: The circadian rhythm of pineal melatonin is the best marker of internal time under low ambient light levels. The endogenous melatonin rhythm exhibits a close association with the endogenous circadian component of the sleep propensity rhythm. This has led to the idea that melatonin is an internal sleep ‘facilitator’ in humans, and therefore useful in the treatment of insomnia and the readjustment of circadian rhythms. There is evidence that administration of melatonin is able: (i) to induce sleep when the homeostatic drive to sleep is insufficient; (ii) to inhibit the drive for wakefulness emanating from the circadian pacemaker; and (iii) induce phase shifts in the circadian clock such that the circadian phase of increased sleep propensity occurs at a new, desired time. Therefore, exogenous melatonin can act as soporific agent, a chronohypnotic, and/or a chronobiotic. We describe the role of melatonin in the regulation of sleep, and the use of exogenous melatonin to treat sleep or circadian rhythm disorders.

601 citations

Journal ArticleDOI
TL;DR: Successful use of melatonin's chronobiotic properties has been reported in other sleep disorders associated with abnormal timing of the circadian system: jetlag, shiftwork, delayed sleep phase syndrome, some sleep problems of the elderly.

560 citations

Journal ArticleDOI
TL;DR: The future holds much promise for melatonin as a research tool and as a therapy for various conditions as well as the general properties of the human circadian system in health and disease.
Abstract: Melatonin signals time of day and time of year in mammals by virtue of its pattern of secretion, which defines 'biological night.' It is supremely important for research on the physiology and pathology of the human biological clock. Light suppresses melatonin secretion at night using pathways involved in circadian photoreception. The melatonin rhythm (as evidenced by its profile in plasma, saliva, or its major metabolite, 6-sulphatoxymelatonin [aMT6s] in urine) is the best peripheral index of the timing of the human circadian pacemaker. Light suppression and phase-shifting of the melatonin 24 h profile enables the characterization of human circadian photoreception, and circulating concentrations of the hormone are used to investigate the general properties of the human circadian system in health and disease. Suppression of melatonin by light at night has been invoked as a possible influence on major disease risk as there is increasing evidence for its oncostatic effects. Exogenous melatonin acts as a 'chronobiotic.' Acutely, it increases sleep propensity during 'biological day.' These properties have led to successful treatments for serveal circadian rhythm disorders. Endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. The future holds much promise for melatonin as a research tool and as a therapy for various conditions.

352 citations

Journal ArticleDOI
TL;DR: The evidence regarding the potential use of melatonin in cancer treatment is summarized and rationale for the design of larger translational research-based clinical trials is provided.
Abstract: Melatonin, the chief secretory product of the pineal gland, is a direct free radical scavenger, an indirect antioxidant, as well as an important immunomodulatory agent. In both in vitro and in vivo investigations, melatonin protected healthy cells from radiation-induced and chemotherapeutic drug-induced toxicity. Furthermore, several clinical studies have demonstrated the potential of melatonin, either alone or in combination with traditional therapy, to yield a favorable efficacy to toxicity ratio in the treatment of human cancers. This study reviews the literature from laboratory investigations that document the antioxidant and oncostatic actions of melatonin and summarizes the evidence regarding the potential use of melatonin in cancer treatment. This study also provides rationale for the design of larger translational research-based clinical trials.

347 citations

Journal ArticleDOI
TL;DR: The radioprotective effects of melatonin against cellular damage caused by oxidative stress and its low toxicity make this molecule a potential supplement in the treatment or co-treatment in situations where the effects of ionizing radiation are to be minimized.
Abstract: Ionizing radiation is classified as a potent carcinogen, and its injury to living cells is, to a large extent, due to oxidative stress. The molecule most often reported to be damaged by ionizing radiation is DNA. Hydroxyl radicals (*OH), considered the most damaging of all free radicals generated in organisms, are often responsible for DNA damage caused by ionizing radiation. Melatonin, N-acetyl-5-methoxytryptamine, is a well-known antioxidant that protects DNA, lipids, and proteins from free-radical damage. The indoleamine manifests its antioxidative properties by stimulating the activities of antioxidant enzymes and scavenging free radicals directly or indirectly. Among known antioxidants, melatonin is a highly effective scavenger of *OH. Melatonin is distributed ubiquitously in organisms and, as far as is known, in all cellular compartments, and it quickly passes through all biological membranes. The protective effects of melatonin against oxidative stress caused by ionizing radiation have been documented in in vitro and in vivo studies in different species and in in vitro experiments that used human tissues, as well as when melatonin was given to humans and then tissues collected and subjected to ionizing radiation. The radioprotective effects of melatonin against cellular damage caused by oxidative stress and its low toxicity make this molecule a potential supplement in the treatment or co-treatment in situations where the effects of ionizing radiation are to be minimized.

339 citations