scispace - formally typeset
Search or ask a question
Author

Michael Shincheon Jee

Other affiliations: Korea University
Bio: Michael Shincheon Jee is an academic researcher from Korea Institute of Science and Technology. The author has contributed to research in topics: Electrocatalyst & Catalysis. The author has an hindex of 12, co-authored 15 publications receiving 1070 citations. Previous affiliations of Michael Shincheon Jee include Korea University.

Papers
More filters
Journal ArticleDOI
TL;DR: DFT calculations enlightened that the specific interaction between Ag nanoparticle and the anchoring agents modified the catalyst surface to have a selectively higher affinity to the intermediate COOH over CO, which effectively lowers the overpotential.
Abstract: Selective electrochemical reduction of CO2 is one of the most sought-after processes because of the potential to convert a harmful greenhouse gas to a useful chemical. We have discovered that immobilized Ag nanoparticles supported on carbon exhibit enhanced Faradaic efficiency and a lower overpotential for selective reduction of CO2 to CO. These electrocatalysts were synthesized directly on the carbon support by a facile one-pot method using a cysteamine anchoring agent resulting in controlled monodispersed particle sizes. These synthesized Ag/C electrodes showed improved activities, specifically decrease of the overpotential by 300 mV at 1 mA/cm2, and 4-fold enhanced CO Faradaic efficiency at −0.75 V vs RHE with the optimal particle size of 5 nm compared to polycrystalline Ag foil. DFT calculations enlightened that the specific interaction between Ag nanoparticle and the anchoring agents modified the catalyst surface to have a selectively higher affinity to the intermediate COOH over CO, which effectivel...

511 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a strategy to tune CO2 reduction activity by modulating the binding energies of the intermediates on the electrocatalyst surfaces with the assistance of molecules that contain the functional group.
Abstract: The electrochemical CO2 reduction reaction to form valued hydrocarbon molecules is an attractive process, because it can be coupled with renewable energy resources for carbon recycling. For an efficient CO2 conversion, designing a catalyst with high activity and selectivity is crucial, because the CO2 reduction reaction in aqueous media competes with the hydrogen evolution reaction (HER) intensely. We have developed a strategy to tune CO2 reduction activity by modulating the binding energies of the intermediates on the electrocatalyst surfaces with the assistance of molecules that contain the functional group. We discovered that the amine functional group on Ag nanoparticle is highly effective in improving selective CO production (Faradaic efficiency to 94.2%) by selectively suppressing HER, while the thiol group rather increases HER activity. A density functional theory (DFT) calculation supports the theory that attaching amine molecules to Ag nanoparticles destabilizes the hydrogen binding, which effect...

186 citations

Journal ArticleDOI
TL;DR: In this article, a porous nanostructured Zn electrocatalysts for CO2 reduction reaction (CO2RR), fabricated by reducing electrodeposited ZnO (RE-Zn), was presented.
Abstract: Here, we have developed porous nanostructured Zn electrocatalysts for CO2 reduction reaction (CO2RR), fabricated by reducing electrodeposited ZnO (RE-Zn) to activate the CO2RR electrocatalytic performance. We discovered that the electrochemical activation environment using CO2-bubbled electrolyte during reducing ZnO in a pretreatment step is important for highly selective CO production over H2 production, while using Ar gas bubbling instead can lead to less CO product of the Zn-based catalyst in CO2RR later. The RE-Zn activated in CO2-bubbled electrolyte condition achieves a Faradaic efficiency of CO production (FECO) of 78.5%, which is about 10% higher than that of RE-Zn activated in Ar-bubbled electrolyte. The partial current density of CO product had more 10-fold increase with RE-Zn electrodes than that of bulk Zn foil at −0.95 V vs RHE in KHCO3. In addition, a very high FECO of 95.3% can be reached using the CO2-pretreated catalyst in KCl electrolyte. The higher amount of oxidized zinc states has been...

114 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the reported reaction mechanisms of the CO2 reduction reaction is summarized with CO and HCOO− formation as model reaction systems and the reaction pathways are also discussed with a theoretical consideration.
Abstract: An electrokinetic analysis of electrochemical CO2 reduction reactions provides information about the decoupled involvement of electron–proton transfer from the Tafel slope and reaction order analyses. Conventionally, a one-electron transfer to CO2 and a chemical proton transfer from HCO3− have been considered to be typical rate-limiting steps. These suggested reaction mechanisms are justified under several assumptions: (1) the bicarbonate ion is a major proton donor, (2) the gaseous CO2 is a carbon source, (3) the reaction mechanism is unaffected by the applied potentials outside the Tafel region, etc. However, recent electrokinetic studies combined with in situ and isotopic experiments raise a question that the above conventional assumptions may not always be valid. Furthermore, there are unresolved issues between the mechanisms suggested by electrokinetic studies. In this review, reported reaction mechanisms of the CO2 reduction reaction are summarized with CO and HCOO− formation as model reaction systems. The reaction pathways are also discussed with a theoretical consideration. A deep investigation into the mechanisms reveals the complex feature of reaction pathways and the difficulty in suggesting the mechanism solely from an electrokinetic analysis.

102 citations

Journal ArticleDOI
TL;DR: A facile chemical solution deposition method is developed to prepare a highly active Co3O4 thin film electrode for OER, showing a low overpotential and an optimal loading of ethyl cellulose additive in a precursor solution was found to be essential for the morphology control and thus its electrocatalytic activity.
Abstract: Oxygen evolution reaction (OER) is the key reaction in electrochemical processes, such as water splitting, metal-air batteries, and solar fuel production. Herein, we developed a facile chemical solution deposition method to prepare a highly active Co3O4 thin film electrode for OER, showing a low overpotential of 377 mV at 10 mA/cm(2) with good stability. An optimal loading of ethyl cellulose additive in a precursor solution was found to be essential for the morphology control and thus its electrocatalytic activity. Our results also show that the distribution of Co3O4 nanoparticle catalysts on the substrate is crucial in enhancing the inherent OER catalytic performance.

90 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the atomically dispersed nickel on nitrogenated graphene was identified as an efficient and durable electrocatalyst for CO2 reduction based on operando X-ray absorption and photo-electron spectroscopy measurements, and the monovalent Ni(i) atomic center with a d9 electronic configuration is identified as the catalytically active site.
Abstract: Electrochemical reduction of CO2 to chemical fuel offers a promising strategy for managing the global carbon balance, but presents challenges for chemistry due to the lack of effective electrocatalyst. Here we report atomically dispersed nickel on nitrogenated graphene as an efficient and durable electrocatalyst for CO2 reduction. Based on operando X-ray absorption and photoelectron spectroscopy measurements, the monovalent Ni(i) atomic center with a d9 electronic configuration was identified as the catalytically active site. The single-Ni-atom catalyst exhibits high intrinsic CO2 reduction activity, reaching a specific current of 350 A gcatalyst−1 and turnover frequency of 14,800 h−1 at a mild overpotential of 0.61 V for CO conversion with 97% Faradaic efficiency. The catalyst maintained 98% of its initial activity after 100 h of continuous reaction at CO formation current densities as high as 22 mA cm−2. Electrocatalysts with improved activity and stability for the conversion of CO2 to CO are being sought. Using operando spectroscopies, the authors identify atomically dispersed Ni(i) as the active site in a nitrogenated-graphene-supported catalyst with high intrinsic activity and stability over 100 hours.

1,368 citations

Journal ArticleDOI
TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Abstract: Photoreduction of CO2 into sustainable and green solar fuels is generally believed to be an appealing solution to simultaneously overcome both environmental problems and energy crisis. The low selectivity of challenging multi-electron CO2 photoreduction reactions makes it one of the holy grails in heterogeneous photocatalysis. This Review highlights the important roles of cocatalysts in selective photocatalytic CO2 reduction into solar fuels using semiconductor catalysts. A special emphasis in this review is placed on the key role, design considerations and modification strategies of cocatalysts for CO2 photoreduction. Various cocatalysts, such as the biomimetic, metal-based, metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area. This Review provides useful information for the design of highly selective cocatalysts for photo(electro)reduction and electroreduction of CO2 and complements the existing reviews on various semiconductor photocatalysts.

1,365 citations

Journal ArticleDOI
TL;DR: Photocatalysts and Photoelectrodes James L. White,† Maor F. Pander III,† Yuan Hu,† Ivy C. Fortmeyer,† James Eujin Park,† Tao Zhang,† Kuo Liao,† Jing Gu,‡ Yong Yan, ‡ Travis W. Shaw,† and Esta Abelev.
Abstract: Photocatalysts and Photoelectrodes James L. White,† Maor F. Baruch,† James E. Pander III,† Yuan Hu,† Ivy C. Fortmeyer,† James Eujin Park,† Tao Zhang,† Kuo Liao,† Jing Gu,‡ Yong Yan,‡ Travis W. Shaw,† Esta Abelev,† and Andrew B. Bocarsly*,† †Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States ‡Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States

1,281 citations

Journal ArticleDOI
TL;DR: Several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction.
Abstract: In view of the climate changes caused by the continuously rising levels of atmospheric CO2 , advanced technologies associated with CO2 conversion are highly desirable. In recent decades, electrochemical reduction of CO2 has been extensively studied since it can reduce CO2 to value-added chemicals and fuels. Considering the sluggish reaction kinetics of the CO2 molecule, efficient and robust electrocatalysts are required to promote this conversion reaction. Here, recent progress and opportunities in inorganic heterogeneous electrocatalysts for CO2 reduction are discussed, from the viewpoint of both experimental and computational aspects. Based on elemental composition, the inorganic catalysts presented here are classified into four groups: metals, transition-metal oxides, transition-metal chalcogenides, and carbon-based materials. However, despite encouraging accomplishments made in this area, substantial advances in CO2 electrolysis are still needed to meet the criteria for practical applications. Therefore, in the last part, several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction.

1,130 citations

Journal ArticleDOI
TL;DR: The physicochemical characteristics of spinels such as their compositions, structures, morphologies, defects, and substrates have been rationally regulated through various approaches and can yield spinels with improved ORR/OER catalytic activities, which can further accelerate the speed, prolong the life, and narrow the polarization of fuel cells, metal-air batteries, and water splitting devices.
Abstract: Spinels with the formula of AB2O4 (where A and B are metal ions) and the properties of magnetism, optics, electricity, and catalysis have taken significant roles in applications of data storage, biotechnology, electronics, laser, sensor, conversion reaction, and energy storage/conversion, which largely depend on their precise structures and compositions. In this review, various spinels with controlled preparations and their applications in oxygen reduction/evolution reaction (ORR/OER) and beyond are summarized. First, the composition and structure of spinels are introduced. Then, recent advances in the preparation of spinels with solid-, solution-, and vapor-phase methods are summarized, and new methods are particularly highlighted. The physicochemical characteristics of spinels such as their compositions, structures, morphologies, defects, and substrates have been rationally regulated through various approaches. This regulation can yield spinels with improved ORR/OER catalytic activities, which can furth...

1,036 citations