scispace - formally typeset
Search or ask a question

Showing papers by "Michael Snyder published in 1996"


Journal ArticleDOI
TL;DR: Findings provide a molecular explanation for quinolone action in bacteria and a new way to study topoisomerase IV-chromosome interactions.

250 citations


Journal ArticleDOI
TL;DR: It is suggested that Axl2p acts as an anchor in the plasma membrane that helps direct new growth components and/or polarity establishment components to the cortical axial budding site in yeast.
Abstract: Spa2p and Cdc10p both participate in bud site selection and cell morphogenesis in yeast, and spa2delta cdc10-10 cells are inviable. To identify additional components important for these processes in yeast, a colony-sectoring assay was used to isolate high-copy suppressors of the spa2delda cdc10-10 lethality. One such gene, AXL2, has been characterized in detail. axl2 cells are defective in bud site selection in haploid cells and bud in a bipolar fashion. Genetic analysis indicates that AXL2 falls into the same epistasis group as BUD3. Axl2p is predicted to be a type I transmembrane protein. Tunicamycin treatment experiments, biochemical fractionation and extraction experiments, and proteinase K protection experiments collectively indicate that Axl2p is an integral membrane glycoprotein at the plasma membrane. Indirect immunofluorescence experiments using either Axl2p tagged with three copies of a hemagglutinin epitope or high-copy AXL2 and anti-Axl2p antibodies reveal a unique localization pattern for Axl2p. The protein is present as a patch at the incipient bud site and in emerging buds, and at the bud periphery in small-budded cells. In cells containing medium-sized or large buds, Axl2p is located as a ring at the neck. Thus, Axl2p is a novel membrane protein critical for selecting proper growth sites in yeast. We suggest that Axl2p acts as an anchor in the plasma membrane that helps direct new growth components and/or polarity establishment components to the cortical axial budding site.

142 citations


Journal ArticleDOI
TL;DR: This review discusses the current understanding of the molecular mechanisms of growth-site selection during the different stages of the yeast life cycle.

55 citations


Journal ArticleDOI
TL;DR: The results demonstrate that the transcriptional activation system in yeast can be used as a convenient system to detect DNA motifs which bind homeodomain proteins, and subsequently, to identify authentic target genes responsive to Hox gene proteins.
Abstract: The mammalian homeodomain proteins encoded by Hox genes play an important role in embryonic development by providing positional queues which define developmental identities along the anteroposterior axis of developing organisms. These proteins bind DNA specifically through their homeodomain to sequences containing ATTA cores, and thereby are thought to exert their effect regulating downstream genes. Little is known about the specificity of binding of homeodomain proteins to their sequences and the identity of their target genes. We have developed a transcriptional activation assay in yeast which employs a homeobox/VP16 fusion gene as a transcriptional activator and a target construct in which test fragments of DNA are inserted upstream to a reporter gene. Using this assay, we compared transcriptional activation by three chimeric proteins containing the homeodomains of the mouse homeobox genes, Hoxa-5, Hoxb-6, and Hoxc-8. When tested on previously defined target sequences, strong differential specificities of activation were observed. In an effort to identify enhancers that normally respond to homeodomain transcriptional activators, random fragments of mouse genomic DNA were cloned upstream of the reporter gene. Genomic DNA fragments with distinct activation profiles were obtained and were found to share matches beyond the ATTA core with previously described enhancers. These results demonstrate that the transcriptional activation system in yeast can be used as a convenient system to detect DNA motifs which bind homeodomain proteins, and subsequently, to identify authentic target genes responsive to Hox gene proteins.

17 citations