scispace - formally typeset
Search or ask a question

Showing papers by "Michael Snyder published in 1997"


Journal ArticleDOI
21 Mar 1997-Science
TL;DR: Genetic studies, coimmunoprecipitation experiments, and analysis of protein phosphorylation indicate that the SBF transcription factor, an important regulator of gene expression at the G1 to S phase cell cycle transition, is a target of the Slt2p(Mpk1p) MAP kinase.
Abstract: Protein kinase C (PKC) signaling is highly conserved among eukaryotes and has been implicated in the regulation of cellular processes such as cell proliferation and growth. In the budding yeast, PKC1 functions to activate the SLT2(MPK1) mitogen-activated protein (MAP) kinase cascade, which is required for the maintenance of cell integrity during asymmetric cell growth. Genetic studies, coimmunoprecipitation experiments, and analysis of protein phosphorylation in vivo and in vitro indicate that the SBF transcription factor (composed of Swi4p and Swi6p), an important regulator of gene expression at the G1 to S phase cell cycle transition, is a target of the Slt2p(Mpk1p) MAP kinase. These studies provide evidence for a direct role of the PKC1 pathway in the regulation of the yeast cell cycle and cell growth and indicate that conserved signaling pathways can act to control key regulators of cell division.

256 citations


Journal ArticleDOI
TL;DR: A model in which Chs3p polarization to cortical sites in yeast is dependent on both Chs5p and the actin cytoskeleton/Myo2p is suggested.
Abstract: Chitin is an essential structural component of the yeast cell wall whose deposition is regulated throughout the yeast life cycle. The temporal and spatial regulation of chitin synthesis was investigated during vegetative growth and mating of Saccharomyces cerevisiae by localization of the putative catalytic subunit of chitin synthase III, Chs3p, and its regulator, Chs5p. Immunolocalization of epitope-tagged Chs3p revealed a novel localization pattern that is cell cycledependent. Chs3p is polarized as a diffuse ring at the incipient bud site and at the neck between the mother and bud in small-budded cells; it is not found at the neck in large-budded cells containing a single nucleus. In large-budded cells undergoing cytokinesis, it reappears as a ring at the neck. In cells responding to mating pheromone, Chs3p is found throughout the projection. The appearance of Chs3p at cortical sites correlates with times that chitin synthesis is expected to occur. In addition to its localization at the incipient bud site and neck, Chs3p is also found in cytoplasmic patches in cells at different stages of the cell cycle. Epitope-tagged Chs5p also localizes to cytoplasmic patches; these patches contain Kex2p, a late Golgi-associated enzyme. Unlike Chs3p, Chs5p does not accumulate at the incipient bud site or neck. Nearly all Chs3p patches contain Chs5p, whereas some Chs5p patches lack detectable Chs3p. In the absence of Chs5p, Chs3p localizes in cytoplasmic patches, but it is no longer found at the neck or the incipient bud site, indicating that Chs5p is required for the polarization of Chs3p. Furthermore, Chs5p localization is not affected either by temperature shift or by the myo2-66 mutation, however, Chs3p polarization is affected by temperature shift and myo2-66. We suggest a model in which Chs3p polarization to cortical sites in yeast is dependent on both Chs5p and the actin cytoskeleton/Myo2p.

212 citations


Journal ArticleDOI
TL;DR: A multifunctional, transposon-based system that simultaneously generates constructs for all the above analyses and is suitable for mutagenesis of any given Saccharomyces cerevisiae gene is developed.
Abstract: Analysis of the function of a particular gene product typically involves determining the expression profile of the gene, the subcellular location of the protein, and the phenotype of a null strain lacking the protein. Conditional alleles of the gene are often created as an additional tool. We have developed a multifunctional, transposon-based system that simultaneously generates constructs for all the above analyses and is suitable for mutagenesis of any given Saccharomyces cerevisiae gene. Depending on the transposon used, the yeast gene is fused to a coding region for β-galactosidase or green fluorescent protein. Gene expression can therefore be monitored by chemical or fluorescence assays. The transposons create insertion mutations in the target gene, allowing phenotypic analysis. The transposon can be reduced by cre–lox site-specific recombination to a smaller element that leaves an epitope tag inserted in the encoded protein. In addition to its utility for a variety of immunodetection purposes, the epitope tag element also has the potential to create conditional alleles of the target gene. We demonstrate these features of the transposons by mutagenesis of the SPA2, ARP100, SER1, and BDF1 genes.

176 citations


Journal ArticleDOI
TL;DR: A role for Rom2p in both polarized morphogenesis and functions of the microtubule cytoskeleton is suggested, as high-copy number plasmids containing either ROM2 or RHO2 suppress the temperature-sensitive growth defects of cik1 delta and kar3 delta strains.
Abstract: Rom2p is a GDP/GTP exchange factor for Rho1p and Rho2p GTPases; Rho proteins have been implicated in control of actin cytoskeletal rearrangements. ROM2 and RHO2 were identified in a screen for high-copy number suppressors of cik1 delta, a mutant defective in microtubule-based processes in Saccharomyces cerevisiae. A Rom2p::3XHA fusion protein localizes to sites of polarized cell growth, including incipient bud sites, tips of small buds, and tips of mating projections. Disruption of ROM2 results in temperature-sensitive growth defects at 11 degrees C and 37 degrees C. rom2 delta cells exhibit morphological defects. At permissive temperatures, rom2 delta cells often form elongated buds and fail to form normal mating projections after exposure to pheromone; at the restrictive temperature, small budded cells accumulate. High-copy number plasmids containing either ROM2 or RHO2 suppress the temperature-sensitive growth defects of cik1 delta and kar3 delta strains. KAR3 encodes a kinesin-related protein that interacts with Cik1p. Furthermore, rom2 delta strains exhibit increased sensitivity to the microtubule depolymerizing drug benomyl. These results suggest a role for Rom2p in both polarized morphogenesis and functions of the microtubule cytoskeleton.

101 citations


Journal ArticleDOI
01 Jun 1997-Genomics
TL;DR: The results indicate that the human dishevelled genes constitute a multigene family and that Dishevelling proteins are highly conserved among metazoans.

79 citations