scispace - formally typeset
Search or ask a question
Author

Michael Snyder

Bio: Michael Snyder is an academic researcher from Stanford University. The author has contributed to research in topics: Gene & Genome. The author has an hindex of 169, co-authored 840 publications receiving 130225 citations. Previous affiliations of Michael Snyder include Wyss Institute for Biologically Inspired Engineering & Public Health Research Institute.
Topics: Gene, Genome, Medicine, Chromatin, Human genome


Papers
More filters
Journal ArticleDOI
TL;DR: Many new high-throughput genomics and proteomics technologies are being implemented to identify candidate disease markers, which are expected to be valuable to achieve the promise of truly personalized medicine.
Abstract: Our understanding of human disease and potential therapeutics is improving rapidly. In order to take advantage of these developments it is important to be able to identify disease markers. Many new high-throughput genomics and proteomics technologies are being implemented to identify candidate disease markers. These technologies include protein microarrays, next-generation DNA sequencing and mass spectrometry platforms. Such methods are particularly important for elucidating the repertoire of molecular markers in the genome, transcriptome, proteome and metabolome of patients with diseases such as cancer, autoimmune diseases, and viral infections, resulting from the disruption of many biological pathways. These new technologies have identified many potential disease markers. These markers are expected to be valuable to achieve the promise of truly personalized medicine.

24 citations

Journal Article
Feng Yue, Yong Cheng, Alessandra Breschi, Jeff Vierstra, Weisheng Wu, Tyrone Ryba, Richard Sandstrom, Zhihai Ma, Carrie A. Davis, Benjamin D. Pope, Yin Shen, Dmitri D. Pervouchine, Sarah Djebali, Robert Thurman, Rajinder Kaul, Eric Rynes, Anthony Kirilusha, Georgi K. Marinov, Brian A. Williams, Diane Trout, Henry Amrhein, Katherine I. Fisher-Aylor, Igor Antoshechkin, Gilberto DeSalvo, Lei-Hoon See, Megan Fastuca, Jorg Drenkow, Chris Zaleski, Alexander Dobin, Pablo Prieto, Julien Lagarde, Giovanni Bussotti, Andrea Tanzer, Olgert Denas, Kanwei Li, Michaël Bender, Miaohua Zhang, Rachel Byron, Mark Groudine, David F. McCleary, Long Pham, Zhen Ye, Samantha Kuan, Lee Edsall, Yi-Chieh Wu, Marie-Louise Hee Rasmussen, Mukul S. Bansal, Manolis Kellis, Cheryl A. Keller, Christopher T. Morrissey, Tejaswini Mishra, Deepti Jain, Nergiz Dogan, Raymond C. Harris, Philip Cayting, Trupti Kawli, Alan P. Boyle, Ghia Euskirchen, Anshul Kundaje, Shin Lin, Yiing Lin, Camden Jansen, Venkat S. Malladi, Melissa S. Cline, Drew T. Erickson, Vanessa M. Kirkup, Katrina Learned, Cricket A. Sloan, Kate R. Rosenbloom, d.B. Lacerda, Kathryn Beal, Miguel Pignatelli, Paul Flicek, Jin Lian, Tamer Kahveci, Dongwon Lee, W. J. Kent, S.M. Ramalho, Javier Herrero, Cedric Notredame, Andrew D. Johnson, Shinny Vong, Kristen Lee, Daniel Bates, Fidencio J. Neri, Morgan Diegel, T. Canfield, Peter J. Sabo, Matthew S. Wilken, Thomas A. Reh, Erika Giste, Anthony Shafer, Tanya Kutyavin, Eric Haugen, Douglas Dunn, Shane Neph, Richard Humbert, Robin L Hansen, M.H.L. de Bruijn, Licia Selleri, Alexander Y. Rudensky, Steven Z. Josefowicz, Robert M. Samstein, Evan E. Eichler, Stuart H. Orkin, Dana N. Levasseur, Thalia Papayannopoulou, Kai-Hsin Chang, Arthur I. Skoultchi, Srikanta Gosh, Christine M. Disteche, Piper R. Treuting, Yanli Wang, Mitchell G. Weiss, Gerd A. Blobel, Xiaoyi Cao, Sheng Zhong, Ting Wang, Peter Good, Rebecca F. Lowdon, Leslie B Adams, X. Zhou, Michael J. Pazin, Elise A. Feingold, Barbara J. Wold, Jeremy F. Taylor, Ali Mortazavi, Sherman M. Weissman, John A. Stamatoyannopoulos, Michael Snyder, Roderic Guigó, Thomas R. Gingeras, David M. Gilbert, Ross C. Hardison, Michael A. Beer, Bing Ren 
01 Jan 2014-Nature

23 citations

Journal ArticleDOI
TL;DR: Following longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum, reveals dynamic changes in the metabolome makeup associated with the gut bacterial colonization, enabled by the adaptation of non-linear time-series analysis to urine metabolomics data.
Abstract: The microbiome has been implicated directly in host health, especially host metabolic processes and development of immune responses. These are particularly important in infants where the gut first begins being colonized, and such processes may be modeled in mice. In this investigation we follow longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum. High-throughput mass spectrometry profiling of urine samples revealed dynamic changes in the metabolome makeup, associated with the gut bacterial colonization, enabled by our adaptation of non-linear time-series analysis to urine metabolomics data. Results demonstrate both gradual and punctuated changes in metabolite production and that early colonization events profoundly impact the nature of small molecules circulating in the host. The identified small molecules are implicated in amino acid and carbohydrate metabolic processes, and offer insights into the dynamic changes occurring during the colonization process, using high-throughput longitudinal methodology.

23 citations

Posted Content
TL;DR: The Minimum Information about Highly Multiplexed Tissue Imaging (MITI) standard as discussed by the authors is based on best practices from genomics and microscopy of cultured cells and model organisms.
Abstract: The imminent release of atlases combining highly multiplexed tissue imaging with single cell sequencing and other omics data from human tissues and tumors creates an urgent need for data and metadata standards compliant with emerging and traditional approaches to histology. We describe the development of a Minimum Information about highly multiplexed Tissue Imaging (MITI) standard that draws on best practices from genomics and microscopy of cultured cells and model organisms.

23 citations

Journal ArticleDOI
TL;DR: In this article, a multi-dimensional approach modeling both tumor and immune-related molecular mechanisms was proposed to predict immune checkpoint blockade (ICB) response, which significantly stratified responders and nonresponders.
Abstract: Purpose: While immune checkpoint blockade (ICB) has become a pillar of cancer treatment, biomarkers that consistently predict patient response remain elusive due to the complex mechanisms driving immune response to tumors. We hypothesized that a multi-dimensional approach modeling both tumor and immune-related molecular mechanisms would better predict ICB response than simpler mutation-focused biomarkers, such as tumor mutational burden (TMB). Experimental Design: Tumors from a cohort of patients with late-stage melanoma (n = 51) were profiled using an immune-enhanced exome and transcriptome platform. We demonstrate increasing predictive power with deeper modeling of neoantigens and immune-related resistance mechanisms to ICB. Results: Our neoantigen burden score, which integrates both exome and transcriptome features, more significantly stratified responders and nonresponders (P = 0.016) than TMB alone (P = 0.049). Extension of this model to include immune-related resistance mechanisms affecting the antigen presentation machinery, such as HLA allele-specific LOH, resulted in a composite neoantigen presentation score (NEOPS) that demonstrated further increased association with therapy response (P = 0.002). Conclusions: NEOPS proved the statistically strongest biomarker compared with all single-gene biomarkers, expression signatures, and TMB biomarkers evaluated in this cohort. Subsequent confirmation of these findings in an independent cohort of patients (n = 110) suggests that NEOPS is a robust, novel biomarker of ICB response in melanoma.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

30,684 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is shown that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads, and estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired- end reads, depending on the number of possible splice forms for each gene.
Abstract: RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene. RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of quantification experiments with RNA-Seq, which is currently relatively expensive.

14,524 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations