scispace - formally typeset
Search or ask a question
Author

Michael Snyder

Bio: Michael Snyder is an academic researcher from Stanford University. The author has contributed to research in topics: Gene & Genome. The author has an hindex of 169, co-authored 840 publications receiving 130225 citations. Previous affiliations of Michael Snyder include Wyss Institute for Biologically Inspired Engineering & Public Health Research Institute.
Topics: Gene, Genome, Medicine, Chromatin, Human genome


Papers
More filters
Journal ArticleDOI
TL;DR: Investigation of transcriptional circuitry controlling pseudohyphal development in Saccharomyces cerevisiae indicates that target hubs can serve as master regulators whose activity is sufficient for the induction of complex developmental responses and therefore represent important regulatory nodes in biological networks.
Abstract: To understand the organization of the transcriptional networks that govern cell differentiation, we have investigated the transcriptional circuitry controlling pseudohyphal development in Saccharomyces cerevisiae. The binding targets of Ste12, Tec1, Sok2, Phd1, Mga1, and Flo8 were globally mapped across the yeast genome. The factors and their targets form a complex binding network, containing patterns characteristic of autoregulation, feedback and feed-forward loops, and cross-talk. Combinatorial binding to intergenic regions was commonly observed, which allowed for the identification of a novel binding association between Mga1 and Flo8, in which Mga1 requires Flo8 for binding to promoter regions. Further analysis of the network showed that the promoters of MGA1 and PHD1 were bound by all of the factors used in this study, identifying them as key target hubs. Overexpression of either of these two proteins specifically induced pseudohyphal growth under noninducing conditions, highlighting them as master regulators of the system. Our results indicate that target hubs can serve as master regulators whose activity is sufficient for the induction of complex developmental responses and therefore represent important regulatory nodes in biological networks.

172 citations

Journal ArticleDOI
TL;DR: In this paper, the authors confirmed the results of a pilot study that indicated that ursodiol prophylaxis could reduce the incidence of veno-occlusive disease of the liver.
Abstract: Background Hepatic complications are a major cause of illness and death after bone marrow transplantation. Objective To confirm the results of a pilot study that indicated that ursodiol prophylaxis could reduce the incidence of veno-occlusive disease of the liver. Design Randomized, double-blind, placebo-controlled study. Setting Tertiary care teaching hospital. Patients 67 consecutive patients undergoing transplantation with allogeneic bone marrow (donated by a relative) in whom busulfan plus cyclophosphamide was used as the preparative regimen and cyclosporine plus methotrexate was used to prevent graft-versus-host disease. Intervention Before the preparative regimen was started, patients were randomly assigned to receive ursodiol, 300 mg twice daily (or 300 mg in the morning and 600 mg in the evening if body weight was > 90 kg), or placebo. Measurements Patients were prospectively evaluated for the clinical diagnosis of veno-occlusive disease, the occurrence of acute graft-versus-host disease, and survival. Results The incidence of veno-occlusive disease was 40% (13 of 32 patients) in placebo recipients and 15% (5 of 34 patients) in ursodiol recipients (P = 0.03). Assignment to placebo was the only pretransplantation characteristic that predicted the development of veno-occlusive disease. The most significant predictor of 100-day mortality was the diagnosis of veno-occlusive disease. The difference in actuarial risk for hematologic relapse in patients with chronic myelogenous leukemia and nonhepatic toxicities between the two groups was not statistically significant (13% in the ursodiol group and 20% in the placebo group; P > 0.2). Conclusion Ursodiol prophylaxis seemed to decrease the incidence of hepatic complications after allogeneic bone marrow transplantation in patients who received a preparative regimen with busulfan plus cyclophosphamide.

171 citations

Journal ArticleDOI
TL;DR: An experimental pipeline is established in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing, and this strategy is applied to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes.
Abstract: Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles.

169 citations

Journal ArticleDOI
TL;DR: This work identifies a new genomic targeting mechanism for an H3K27 demethylase and demonstrates its key role in recruiting the BRM chromatin remodeler.
Abstract: Yuhai Cui and colleagues report that the H3K27 demethylase REF6 targets genomic loci containing a specific DNA motif via its zinc-finger domains. They show that REF6 facilitates the recruitment of BRM and that deleting the DNA motif from a target gene in Arabidopsis makes it inaccessible to REF6.

168 citations

Journal ArticleDOI
TL;DR: The hemapoietic lineage-specific transcription factor GATA-1 is implicated in regulating the expression of the erythroid-specific genes including the genes of the β-globin locus and binds in a region encompassing the HS2 core element, as was previously identified.
Abstract: The expression of the β-like globin genes is intricately regulated by a series of both general and tissue-restricted transcription factors. The hemapoietic lineage-specific transcription factor GATA-1 is important for erythroid differentiation and has been implicated in regulating the expression of the erythroid-specific genes including the genes of the β-globin locus. In the human erythroleukemic K562 cell line, only one DNA region has been identified previously as a putative site of GATA-1 interaction by in vivo footprinting studies. We mapped GATA-1 binding throughout the β-globin locus by using chIp-chip analysis of K562 cells. We found that GATA-1 binds in a region encompassing the HS2 core element, as was previously identified, and an additional region of GATA-1 binding upstream of the γG gene. This approach will be of general utility for mapping transcription factor binding sites within the β-globin locus and throughout the genome.

168 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

30,684 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is shown that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads, and estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired- end reads, depending on the number of possible splice forms for each gene.
Abstract: RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene. RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of quantification experiments with RNA-Seq, which is currently relatively expensive.

14,524 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations